首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas更改数据类型【方法总结】

例如,上面的例子,如何将2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改类型?...理想情况下,希望以动态方式做到这一点,因为可以有数百个,明确指定哪些是哪种类型太麻烦。可以假定每都包含相同类型。...对于多或者整个DataFrame 如果想要将这个操作应用到多个,依次处理每一是非常繁琐,所以可以使用DataFrame.apply处理每一。...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型将被转换,而不能(例如,它们包含非数字字符串或日期...']}, dtype='object') >>> df.dtypes a object b object dtype: object 然后使用infer_objects(),可以将’a’类型更改

20.3K30

Pandas 查找,丢弃唯一

前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 唯一,简言之,就是某数值除空外,全都是一样,比如:全0,全1,或者全部都是一样字符串如...:已支付,已支付,已支付… 这些大多形同虚设,所以当数据集很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据 NaN 也会被 Pandas 认为是一种 “ ”,如下图: 所以只要把缺失先丢弃,再统计该唯一个数即可。...代码实现 数据读入 检测唯一所有并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...唯一 ” --> “ 除了空以外唯一个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我其余文章,提建议,共同进步。

5.7K21
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas如何查找某中最大

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取问题,问题如下:譬如我要查找某中最大,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通,也能顺利地解决自己问题。...顺利地解决了粉丝问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取问题,文中针对该问题,给出了具体解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出问题,感谢【瑜亮老师】给出思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    34610

    使用pandas筛选出指定所对应

    pandas怎么样实现类似mysql查找语句功能: select * from table where column_name = some_value; pandas获取数据有以下几种方法...: 布尔索引 位置索引 标签索引 使用API 假设数据如下: import pandas as pd import numpy as np df = pd.DataFrame({'A': 'foo bar...布尔索引 该方法其实就是找出每一行符合条件真值(true value),如找出列A中所有等于foo df[df['A'] == 'foo'] # 判断等式是否成立 ?...位置索引 使用iloc方法,根据索引位置来查找数据。...数据提取不止前面提到情况,第一个答案就给出了以下几种常见情况:1、筛选出列等于标量行,用== df.loc[df['column_name'] == some_value] 2、筛选出列属于某个范围内

    19K10

    用过Excel,就会获取pandas数据框架、行和

    在Excel,我们可以看到行、和单元格,可以使用“=”号或在公式引用这些。...在Python,数据存储在计算机内存(即,用户不能直接看到),幸运pandas库提供了获取值、行和简单方法。 先准备一个数据框架,这样我们就有一些要处理东西了。...df.columns 提供(标题)名称列表。 df.shape 显示数据框架维度,在本例为4行5。 图3 使用pandas获取 有几种方法可以在pandas获取。...每种方法都有其优点和缺点,因此应根据具体情况使用不同方法。 点符号 可以键入“df.国家”以获得“国家”,这是一种快速而简单获取方法。但是,如果列名包含空格,那么这种方法行不通。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格 要获取单个单元格,我们需要使用行和交集。

    19.1K60

    pandasdrop函数_pandas replace函数

    大家好,又见面了,我是你们朋友全栈君。 dropna()函数作用是去除读入数据(DataFrame)含有NaN行。...Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT 使用...dropna() 效果: >>> df.dropna() name toy born 1 Batman Batmobile 1940-04-25 注意: 在代码要保存对原数据修改...结果仍包含NaN dropna 参数: axis: default 0指行,1为 how: {‘any’, ‘all’}, default ‘any’指带缺失所有行;’all’指清除全是缺失...thresh: int,保留含有int个非空行 subset: 对特定进行缺失删除处理 inplace: 这个很常见,True表示直接在原数据上更改 参考 版权声明:本文内容由互联网用户自发贡献

    1.5K20

    删除 NULL

    图 2 输出结果 先来分析图 1 是怎么变成图 2,图1 tag1、tag2、tag3 三个字段都存在 NULL ,且NULL无处不在,而图2 里面的NULL只出现在这几个字段末尾。...这个就类似于 Excel 里面的操作,把 NULL 所在单元格删了,下方单元格往上移,如果下方单元格仍是 NULL,则继续往下找,直到找到了非 NULL 来补全这个单元格内容。...有一个思路:把每一去掉 NULL 后单独拎出来作为一张独立表,这个表只有两个字段,一个是序号,另一个是去 NULL 后。...一个比较灵活做法是对原表数据做转行,最后再通过行转列实现图2 输出。具体实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按在原表列出现顺序设置了序号,目的是维持同一相对顺序不变。

    9.8K30

    pandas缺失处理

    在真实数据,往往会存在缺失数据。...pandas在设计之初,就考虑了这种缺失情况,默认情况下,大部分计算函数都会自动忽略数据集中缺失,同时对于缺失也提供了一些简单填充和删除函数,常见几种缺失操作技巧如下 1....缺失判断 为了针对缺失进行操作,常常需要先判断是否有缺失存在,通过isna和notna两个函数可以快速判断,用法如下 >>> a = pd.Series([1, 2, None, 3]) >>...大部分运算函数在处理时,都会自动忽略缺失,这种设计大大提高了我们编码效率。...同时,通过简单上述几种简单缺失函数,可以方便地对缺失进行相关操作。

    2.6K10

    细说Python函数不同使用方法

    ,而可以在任何地方使用(和更新)变量称为全局变量 还有一点:如果主程序里调用函数函数值,程序会报错  就像这个例子 编辑器都告诉你这样是错误  7、函数使用全局变量 这里我们需要用到...这是告诉Python,函数sh使用“x”变量应该是其他位置创建全局变量,而不是一个局部变量。...所以程序第一行打印是33,此后调用 函数sss,此时更行第四行全局变量,再打印x时,为800 8、内建函数 内建函数要用到 “exec ”函数,最终结果时再一个程序运行另一个程序,听起来挺拗口...,如果要改变的话,可以把返回再存储到列表  如果要返回列表的话,我们需要将返回小括号改成方括号即可  10、接下来该考虑一下比较综合性函数 我们就考虑做一个求平均值函数,调用函数代码有时候只用传入少许参数...,但是有的时候却要传入多组数据,我们可以使用任意参数长度标记——星号(*),我们就可以编写接收不同参数数量函数,下面是一个实例 def average(*numbers): # * 作用是将数据变成一个元组存放

    1.2K20

    pandas窗口处理函数

    滑动窗口处理方式在实际数据分析中比较常用,在生物信息,很多算法也是通过滑动窗口来实现,比如经典质控软件Trimmomatic, 从序列5'端第一个碱基开始,计算每个滑动窗口内碱基质量平均值...在pandas,提供了一系列按照窗口来处理序列函数。....count() 0 1.0 1 2.0 2 2.0 3 1.0 4 1.0 dtype: float64 window参数指定窗口大小,在rolling系列函数,窗口计算规则并不是常规向后延伸...以上述代码为例,count函数用于计算每个窗口内非NaN个数,对于第一个元素1,再往前就是下标-1了,序列不存在这个元素,所以该窗口内有效数值就是1。...以上述代码为例,expanding窗口也是向前延伸,不同之处在于它会延伸到起始第一个元素。对于第一个元素而言,其窗口只有1个元素,不符合最小有效数值要求,所以返回NaN。

    2K10

    PandasApply函数具体使用

    ,但是我认为其中最好用函数是下面这个函数: apply函数 apply函数是`pandas`里面所有函数自由度最高函数。...这个函数需要自己实现,函数传入参数根据axis来定,比如axis = 1,就会把一行数据作为Series数据结构传入给自己实现函数,我们在函数实现对Series不同属性之间计算,返回一个结果...假如我们想要得到表格PublishedTime和ReceivedTime属性之间时间差数据,就可以使用下面的函数来实现: import pandas as pd import datetime...,就可以用apply函数*args和**kwds参数,比如同样时间差函数,我希望自己传递时间差标签,这样没次标签更改就不用修改自己实现函数了,实现代码如下: import pandas as...函数多了两个参数,这样我们在使用apply函数时候要自己传递参数,代码显示三种传递方式都行。

    1.4K30

    箭头函数this

    其实那只是其中一个因素,还有一个因素就是在ZnHobbies方法this已经不属于上一个区块,而这里this并没有name。...所以 解决办法其中一个就是在ZnHobbies函数写入 var that = this; 然后将this替换成that,所以输出结果,就有了lucifer名字啦。...还有的一个办法就是将ZnHobbies函数map改写成箭头函数: ZnHobbies: function () { this.hobbies.map((hobby)=...为什么箭头函数可以达到这样效果呢?是因为箭头函数没有它自己'this'。它this是继承于它父作用域。...所以它不会随着调用方法改变而改变,所以这里this就指向它父级作用域,而上一个this指向是Lucifer这个Object。所以我们就能准确得到Lucifername啦。

    2.2K20

    Pandas替换简单方法

    这可能涉及从现有创建新,或修改现有以使它们适合更易于使用。为此,Pandas 提供了多种方法,您可以使用这些方法来处理 DataFrame 中所有数据类型。...import pandas as pd df = pd.read_csv('WordsByCharacter.csv') 使用“替换”来编辑 Pandas DataFrame 系列(字符串...Pandas replace 方法允许您在 DataFrame 指定系列搜索,以查找随后可以更改或子字符串。...也就是说,需要传递想要更改每个,以及希望将其更改为什么。在某些情况下,使用查找和替换与定义正则表达式匹配所有内容可能更容易。...但是,在想要将不同更改不同替换情况下,不必多次调用 replace 方法。相反,可以简单地传递一个字典,其中键是要搜索,而是要替换原始内容。下面是一个简单例子。

    5.4K30
    领券