随着分布式系统规模的日益扩大,集群中的机器规模也随之变大,那如何更好地进行集群管理也显得越来越重要了。所谓集群管理,包括集群监控与集群控制两大块,前者侧重对集群运行时状态的收集,后者则是对集群进行操作与控制。
在早期的项目中,如果想要在生产环境中通过日志定位业务服务的Bug 或者性能问题,则需要运维人员使用命令挨个服务实例去查询日志文件,这样导致的结果就是排查问题的效率非常低。
以下是我在公司内部分享的关于分布式日志收集系统的PPT内容,现在与大家分享,希望对于需要使用的人能够起到基本的入门作用或是了解! 1.分布式日志收集系统:背景介绍 许多公司的平台每天会产生大量的日志(一般为流式数据,如,搜索引擎的pv,查询等),处理这些日志需要特定的日志系统,一般而言,这些系统需要具有以下特征: (1) 构建应用系统和分析系统的桥梁,并将它们之间的关联解耦; (2) 支持近实时的在线分析系统和类似于Hadoop之类的离线分析系统; (3) 具有高可扩展性。
项目背景 每个系统都有日志,当系统出现问题时,需要通过日志解决问题 当系统机器比较少时,登陆到服务器上查看即可满足 当系统机器规模巨大,登陆到机器上查看几乎不现实 当然即使是机器规模不大,一个系统通常
随着互联网架构的扩张,分布式系统变得日趋复杂,越来越多的组件开始走向分布式化,如微服务、消息收发、分布式数据库、分布式缓存、分布式对象存储、跨域调用,这些组件共同构成了繁杂的分布式网络,那现在
即所谓的配置中心,就是发布者经数据发布到ZooKeeper的一个或一系列节点上,供订阅者进行数据订阅,进而达到动态的获取数据的目的,实现配置信息的集中式管理和数据的动态更新
中间件是指位于应用程序和操作系统之间的软件组件,用于协调和连接不同的系统、服务或组件,以实现数据传输、通信和功能扩展。它们在分布式系统、网络通信和应用集成中起着关键的作用。
在微服务和容器化应用程序的时代,有效管理和监控应用程序的健康状况和性能变得至关重要。Kubernetes 是一个开源系统,用于自动化部署、扩展和管理容器化的应用程序,它已经成为企业寻求敏捷性和韧性的首选解决方案。
ELK 是 elastic(美国数据搜索软件初创公司) 公司提供的一套完整的日志收集、日志搜索分析、展示解决方案,是三个产品的首字母缩写。这三个产品分别是 ElasticSearch、Logstash 和 Kibana,同时加入 beats 来优化 Logstash。
Loki是由Grafana Labs开源的一个水平可扩展、高可用性,多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中,处理海量日志的问题。Loki采用了分布式的架构,并且与Prometheus、Grafana密切集成,可以快速地处理大规模的日志数据。该项目受 Prometheus 启发,官方的介绍是:Like Prometheus,But For Logs.。
数据是怎么来的? 在很多行业,数据都是人工收集来的,比如医学疾病数据、环境数据、经济数据等。数据的更新周期也比较长,比如年度、月度。 但互联网行业不一样,这个天然的流量行业,数据量巨大,更新周期按天就算长了,通常有小时级、分钟级、实时秒级,甚至来不及落入表中,直接对实时流数据就进行计算。 最后说的这种「流式计算」,之前介绍过:什么是流式计算 | 另一个世界系列,对数据流实时进行计算,不需要存储到表里,主要为了满足一些实时级的需求,比如实时监控、实时个性化推荐等。 不管是「流式计算」还是存储到表里再计算
问题导读: 1.Flume-NG与Scribe对比,Flume-NG的优势在什么地方? 2.架构设计考虑需要考虑什么问题? 3.Agent死机该如何解决? 4.Collector死机是否会有影响? 5.Flume-NG可靠性(reliability)方面做了哪些措施? 美团的日志收集系统负责美团的所有业务日志的收集,并分别给Hadoop平台提供离线数据和Storm平台提供实时数据流。美团的日志收集系统基于Flume设计和搭建而成。 《基于Flume的美团日志收集系统》将分两部分给读者呈现美团日志收集系统
Exceptionless 是一个开源的实时的日志收集框架,它可以应用在基于 ASP.NET,ASP.NET Core,Web API,Web Forms,WPF,Console,ASP.NET MVC 等技术开发的应用程序中,并且提供了REST接口可以应用在 Javascript,Node.js 中。它将日志收集变得简单易用并且不需要了解太多的相关技术细节及配置,对于微服务架构的应用程序来说,统一的日志收集系统的建立更是有必要。
今天来聊下大数据场景下比较流行的消息队列组件kafka。本篇文章将主要从理论角度来介绍。
推荐系统是大数据中最常见和最容易理解的应用之一,比如说淘宝的猜你喜欢和京东等网站的用户提供个性化的内容。但是不仅仅只有电商会用推荐引擎为用户提供额外的商品,推荐系统也可以被用在其他行业,以及具有不同的应用中使用,如网易云音乐的每日歌曲推荐、活动、产品到约会对象。
START:Flume是Cloudera提供的一个高可用的、高可靠的开源分布式海量日志收集系统,日志数据可以经过Flume流向需要存储终端目的地。这里的日志是一个统称,泛指文件、操作记录等许多数据。
排查分布式系统问题用的最多的手段就是查看系统日志,但是目前分布式系统都是部署在多台机器上且多数调用链路比较长,因此日常工作过程中经常出现研发人员同时登录多台机器切换各个终端查询日志的场景。我们希望搭建一个日志收集及查询系统,方便定位问题。
官网:Flume is a distributed, reliable, and availableservicefor efficientlycollecting, aggregating, and moving large amounts of log data. It has a simple and flexible architecture based on streaming data flows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and recovery mechanisms. It uses a simple extensible data model that allows for online analytic application.
Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的Apache项目。是大数据Hadoop生态体系中用的非常广泛的基础组件
Hadoop是一个能够对大量数据进行分布式处理的软件框架。具有 可靠、高效、可伸缩的特点。
这些年软件的设计规模越来越庞大,业务需求也越来越复杂,针对系统的性能、高吞吐率、高稳定性、高扩展等特性提出了更高的要求。可以说业务需求是软件架构能力的第一推动力,由于这些因素导致了软件架构思想和相关技术也在发生着巨变。这些变化反应在软件架构行业里,就是我们开始越来越多的听到了很多新的词汇,比如:“分布式”、“SOA”、“微服务”、“中台”等概念。
GitHub地址:https://github.com/abel-max/Java-Study-Note/tree/master
ELK (elasticsearch logstash kibana)其实并不是一款软件,而是一整套解决方案,是三个软件产品的首字母缩写,Elasticsearch,Logstash 和 Kibana。这三款软件都是开源软件,通常是配合使用。
UCode Cms是面向企业级应用软件开发的脚手架。希望构造一个合起来是一个系统,拆分出来是独立的组件,供其它项目复用。
应用A,B,C,D,E 以一个层级关系依赖, 当用户向 应用A 发起请求,但是返回了个异常,为了排查这个问题,我们可能要一台台服务器去排查。在分布式架构下,每个应用又部署了几十上百台服务器, 那一天下来,可能多没找到问题的触发点。
ELK 是elastic公司提供的一套完整的日志收集以及展示的解决方案,是三个产品的首字母缩写,分别是ElasticSearch、Logstash 和 Kibana。
分布式数据采集是分布式记录方式可以在影响网络带宽最小的情况下采集到所需要的数据,其主要设计思路就是在成员与RTI之间加一层记录接口,成员在向RTI发送数据时,首先经过记录接口,由记录接口将数据记录之后,再转发给RTI,这样就不会有冗余的数据在网络上传输(特别是大大减少了网络上的网间数据),消除了系统瓶颈。
尽管YARN自带的编程API已经得到了极大的简化,但从头开发一个YARN应用程序仍是一件非常困难的事情。在YARN上编写一个应用程序,你需要开发Client和ApplicationMaster两个模块,并了解涉及到的几个协议的若干API和参数列表,其中ApplicationMaster还要负责资源申请,任务调度、容错等,总之,整个过程非常复杂。
典型的互联网应用的日志系统,从功能需求上看主要包括收集,存储和分析,以及展示这样三个部分,因此整个系统我觉得也可以按此思路大致可以分为三个部分:
-coordination and management(协调与管理) -query(查询) -data piping(数据管道) -core hadoop(核心hadoop) -machine learning(机器学习) -nosql database(nosql数据库)
Apache Kafka 是分布式发布-订阅消息系统,在 kafka 官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统。
监控缓存中间件,如 Redis 是关键的,因为它直接影响到应用性能和可靠性。以下是监控 Redis 时应考虑的主要指标:
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
Elasticsearch是一个实时的分布式搜索和分析引擎,它可以用于全文搜索,结构化搜索以及分析,采用Java语言编写。目前,官网最新的版本是Elasticsearch 7.6.0.那么同时,Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎,能够解决越来越多的用例。它作为 Elastic Stack 的核心,它集中存储您的数据,帮助您发现意料之中以及意料之外的情况。要想获取最新的软件版本和文档支持。我们可以通过访问如下链接获取相关帮助。https://www.elastic.co/cn/downloads/elasticsearch
ELK是三个开源软件的缩写,分别表示:Elasticsearch , Logstash, Kibana , 它们都是开源软件。新增了一个FileBeat,它是一个轻量级的日志收集处理工具(Agent),Filebeat占用资源少,适合于在各个服务器上搜集日志后传输给Logstash,官方也推荐此工具。
ELK是一个应用套件,由Elasticsearch,Logstash和Kibana组成
context&日志项目 context 一般场景下取消goroutine的方法 var wg sync.WaitGroup var exit bool func worker(exitChan chan struct{}) { LOOP: for { fmt.Printf("work\n") time.Sleep(time.Second) /*if exit { break } */ select
作者简介 王克礼,去哪儿平台事业部基础架构Java开发工程师,参与开发和维护去哪儿内部中间件,包括配置中心、消息队列、日志收集及链路跟踪系统QTracer等。 随着公司业务的发展,支持业务的程序也会逐步发展;随着业务的复杂化和流量的增加,一般都会通过拆分的方式来分解不同的业务,将流量分摊到更多的机器上,从而支撑更复杂的业务和更大的流量。 这种分布式的系统会带来很多好处,也自然带来了一些问题。分布式意味着需要通过网络来进行调用,比如RPC调用、HTTPAPI调用、消息队列等;同时,不只是内部开发的程序是分布
近年来,IT系统逐渐呈现海量化和异构化的趋势,企业每天可能会产生上百GB甚至TB级的日志数据,如何实现日志数据的集中化接入,以及保障日志管理的持续拓展性,成为企业日志管理的一大难点。
可观测性一般会被分成三种具体的表现形式,分别是日志、追踪和度量。那么这节课,我们就来讨论其中最普遍的形式:事件日志。
之所以有这么一个话题,确实是有原因的。就在前几天,我又收到了一个同行的邮件,是向我咨询关于大数据方向的问题,他们想涉足大数据这个领域,或者说已经涉足大数据这个领域,只是不知道下一步该如何进行,很是迷茫。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。具有可靠、高效、可伸缩的特点。
3.4、在ASP.NET WebForm应用程序中如何将日志推送到Exceptionless
TakinTalks稳定性社区专家团成员。毕业于大连理工大学,10年以上大型分布式基础架构经验,专注于大型分布式基础架构和大数据处理领域。曾就职于58集团,主要负责58到家基础架构工作。后进入去哪儿旅行,负责分布式链路追踪系统的建设以及APM体系的搭建。在大数据、高并发的场景有丰富的经验。
当我们的系统发生故障时,我们需要登录到各个服务器上,使用 grep / sed / awk 等 Linux 脚本工具去日志里查找故障原因。
架构、分布式、日志队列,标题自己都看着唬人,其实就是一个日志收集的功能,只不过中间加了一个Redis做消息队列罢了。
在微服务架构中,日志是一个不得不面临与需要解决的点。因为微服务架构中,服务是分散在不同的节点或虚拟机上运行,这意味着服务产生的日志也是分散的,所以收集分散的日志就成为了微服务中的一个痛点。否则有需要时查询起日志来就非常麻烦与不方便。
导语:当你的业务系统既要对实时数据进行处理也要对离线数据进行分析时,这时候可以来了解一下Flume。
ELK 已经成为目前最流行的集中式日志解决方案,它主要是由Beats、Logstash、Elasticsearch、Kibana等组件组成,来共同完成实时日志的收集,存储,展示等一站式的解决方案。本文将会介绍ELK常见的架构以及相关问题解决。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
领取专属 10元无门槛券
手把手带您无忧上云