首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pyspark之dataframe操作

、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去 12、 生成新列 13、行最大最小值...# ['color', 'length'] # 查看行数,和pandas不一样 color_df.count() # dataframe列名重命名 # pandas df=df.rename(columns...# 选择一列几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符才能使用 color_df.select('length').show...spark.createDataFrame(department, schema=["emp_id","departement"]) department.show() # 2.连接 # join默认是内连接,最终结果会存在重复列名...# 如果是pandas,重复列会用_x,_y等后缀标识出来,但spark不会 # join会在最后dataframe存在重复列 final_data = employees.join(salary

10.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Power Pivot如何计算具有相同日期数据移动平均?

    (四) 如何计算具有相同日期数据移动平均? 数据表——表1 ? 效果 ? 1. 解题思路 具有相同日期数据,实际上也就是把数据进行汇总求和后再进行平均值计算。其余和之前写法一致。...建立数据表和日期表之间关系 2. 函数思路 A....() , //满足5日均线计算条件 AverageX(Filter(All('日历'), [排名]>=pm-5 && [排名]<pm), //筛选出符合要求日期区间表...满足计算条件增加1项,即金额不为空。 是通过日历表(唯一值)进行汇总计算,而不是原表。 计算平均值,是经过汇总后金额,而不单纯是原来表列金额。...如果觉得有帮助,那麻烦您进行转发,让更多的人能够提高自身工作效率。

    3K10

    pandas系列4_合并和连接

    DF数据,缺值用NaN补充 join outer:合并,缺值用nan inner:求交集,非交集部分直接删除 keys:用于层次化索引 ignore_index:不保留连接轴上索引,产生新索引 官方文档...、right、left on 用于连接列名,默认是相同列名 left_on \right_on 左侧、右侧DF中用作连接键列 sort 根据连接键对合并后数据进行排序,默认是T suffixes...重复列名,直接指定后缀,用元组形式(’_left’, ‘_right’) left_index、right_index 将左侧、右侧行索引index作为连接键(用于index合并) df1 =...如果不指定on参数,自动按照重叠列名进行合并 最好指定key: pd.merge(df1, df2, on='key') # 将两个df数据相同值进行合并 pd.merge(df1, df2)...df数据列名 lkey data1 rkey data2 0 b 0 b 1 1 b 1 b 1 2 a 2 a 0 3 a 4 a 0 4 a 5 a 0 交集和并集 通过参数how来实现

    77810

    Pandas中级教程——数据合并与连接

    Python Pandas 中级教程:数据合并与连接 Pandas 是一款强大数据处理库,提供了丰富功能来处理和分析数据。在实际数据分析,我们常常需要将不同数据源信息整合在一起。...本篇博客将深入介绍 Pandas 数据合并与连接技术,帮助你更好地处理多个数据集情况。 1. 安装 Pandas 确保你已经安装了 Pandas。...数据合并 4.1 使用 merge 函数 merge 函数是 Pandas 中用于合并数据强大工具,它类似于 SQL JOIN 操作。...处理重复列名 当连接两个数据集时,可能会出现重复列名,可以使用 suffixes 参数为重复列名添加后缀。...总结 通过学习以上 Pandas 合并与连接技术,你可以更好地处理多个数据集之间关系,提高数据整合效率。在实际项目中,理解这些技术并熟练运用它们是数据分析重要一环。

    17310

    设计在单链表删除相同多余结点算法

    这是一个无序单链表,我们采用一种最笨办法,先指向首元结点,其元素值为2,再遍历该结点后所有结点,若有结点元素值与其相同,则删除;全部遍历完成后,我们再指向第二个结点,再进行同样操作。...这样就成功删除了一个与首元结点重复结点,接下来以同样方式继续比较,直到整个单链表都遍历完毕,此时单链表已无与首元结点重复结点;然后我们就要修改p指针指向,让其指向首元结点下一个结点,再让q指向其下一个结点...,继续遍历,将单链表与第二个结点重复所有结点删除。...刚才我们已经删除了一个结点,那么接下来p应该指向下一个结点了: 此时让指针p指向结点与下一个结点元素值比较,发现不相等,那么让q直接指向下一个结点即可:q = q -> next。...通过比较发现,下一个结点元素值与其相等,接下来就删除下一个结点即可: 此时p指针域也为NULL,算法结束。

    2.2K10

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除列也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除名称列表。...图3 重赋值方法 也就是方括号法,但这不是真正删除方法,而是重新赋值操作。但是,最终结果与删除相同。...如果我们需要保留许多列,必须键入计划保留所有列名称,这可能需要大量键入。

    7.2K20

    对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架删除技术。...准备数据框架 我们将使用前面系列中用过“用户.xlsx”来演示删除行。 图1 注意上面代码index_col=0?如果我们将该参数留空,则索引将是基于0索引。...使用.drop()方法删除行 如果要从数据框架删除第三行(Harry Porter),pandas提供了一个方便方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”行。...这次我们将从数据框架删除带有“Jean Grey”行,并将结果赋值到新数据框架。 图6

    4.6K20

    pandas多表操作,groupby,时间操作

    多表操作 merge合并 pandas.merge可根据一个或多个键将不同DataFrame行合并起来 pd.merge(left, right)# 默认merge会将重叠列列名当做键,即how...='inner',有多个重复列名则选取重复列名值都相同行 # 指定“on”作为连接键,left和right两个DataFrame必须同时存在“on”列,连接键也可N对N(少用) pd.merge(left..."])#两个表取key1,key2都相同行,right列放在left列右边 pd.merge(left, right, left_on="key", right_on="key")#两个表取...key列行相同行,其他重复列名变为column_x,column_y,与on='key'相同 # suffixes:用于追加到重叠列名末尾,默认为("_x", "_y") pd.merge(left...pandas提供了一个灵活高效groupby功能,它使你能以一种自然方式对数据集进行切片、切块、摘要等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。

    3.8K10

    Word VBA技术:删除表格内容相同重复行(加强版)

    标签:Word VBA 在《Word VBA技术:删除表格内容相同重复行》,我们演示了如何使用代码删除已排序表第1列内容相同行。...然而,如果表格第1列没有排序,那么如何删除这列内容相同行呢? 对上篇文章中介绍代码稍作调整,就可以实现删除相同内容任务。...Long Dim strLastRowCell As String Dim strCell As String Dim strCellPrevious As String '指定想要操作表格...End If Next j Next i '打开屏幕更新 Application.ScreenUpdating = True End Sub 代码从表格最后一行开始,依次遍历表格所有行并对第一列内容进行比较...,删除具有相同内容行。

    2.6K20

    pandas技巧6

    本篇博文主要是对之前几篇关于pandas使用技巧小结,内容包含: 创建S型或者DF型数据,以及如何查看数据 选择特定数据 缺失值处理 apply使用 合并和连接 分组groupby机制 重塑reshaping...keys:用于层次化索引 ignore_index:不保留连接轴上索引,产生新索引 连接merge 可根据⼀个或多个键将不同DataFrame⾏连接起来,它实现就是数据库join操作 ,就是数据库风格合并...常用参数表格 参数 说明 left 参与合并左侧DF right 参与合并右侧DF how 默认是inner,inner、outer、right、left on 用于连接列名,默认是相同列名...left_on \right_on 左侧、右侧DF中用作连接键列 sort 根据连接键对合并后数据进行排序,默认是T suffixes 重复列名,直接指定后缀,用元组形式(’_left’, ‘_right...values是生成透视表数据 index是透视表层次化索引,多个属性使用列表形式 columns是生成透视表列属性

    2.6K10

    Python~Pandas 小白避坑之常用笔记

    ; 2、Pandas 纳入了大量库和一些标准数据模型,提供了高效地操作大型数据集所需工具; 3、pandas提供了大量能使我们快速便捷地处理数据函数和方法;它是使Python成为强大而高效数据分析环境重要因素之一...= sheet1.duplicated(subset=['user_id']).sum() # 再次统计user_id列 重复值数量 print("剔除后-user_id重复列数:", duplicated_num...对象进行异常值剔除、修改 需求:“Age”列存在数值为-1、0 和“-”异常值,删除存在该情况行数据;“Age”列存在空格和“岁”等异常字符,删除这些异常字符但须保留年龄数值 import pandas...(城市, 地区)列 print(sheet1.head(5)) 四、数据提取、loc、iloc使用 1.根据列名提取数据 import pandas as pd sheet1 = pd.read_excel...,本文仅仅简单介绍了pandas使用,而pandas提供了大量能使我们快速便捷地处理数据函数和方法,续有常用pandas函数会在这篇博客持续更新。

    3.1K30

    数据导入与预处理-第6章-01数据集成

    重叠合并数据是一种并不常见操作,它主要将一组数据空值填充为另一组数据对应位置值。pandas可使用combine_first()方法实现重叠合并数据操作。...lsuffix: 左DataFrame复列后缀 rsuffix: 右DataFrame复列后缀 sort: 按字典序对结果在连接键上排序 join方式为按某个相同列进行join: score_df...df.set_index('name', inplace=True) # 设置索引 score_df.join(score1_df, on='name') 输出为: 两个dataframe在合并时候有相同列名...'石申夫', '乙', '甘德'], 'score': ['A', 'B', 'C', 'B']}) # 两个dataframe在合并时候有相同列名...,需要使用属性lsuffix和rsuffix指定相同列名后缀 score_df.join(score1_df,lsuffix='_l', rsuffix='_r') # 可以尝试不加看看 输出为:

    2.6K20
    领券