一套linux体系,只有内核本身是不能工作的,必须要 rootfs 上的 etc 目录下的配置文件、/bin /sbin 等目录下的 shell 命令,还有 /lib 目录下的库文件等···)相配合才能工作 。
/proc –proc文件系统是内核与用户的接口,将内核的一些信息反映到此目录下
摘要:能不能在ARM板上运行Ubuntu呢?答案肯定是可以的,Ubuntu是Linux系统的一种,可以简单的将Ubuntu理解为一个根文件系统,和我们用busybox、buildroot制作的根文件系统一样。因此移植Ubuntu也就是将Ubuntu根文件系统移植到我们的开发板上。
一个最小可运行Linux操作系统需要内核镜像bzImage和rootfs,本文整理了其制作、安装过程,调试命令,以及如何添加共享磁盘。
上篇文章介绍了根文件系统的制作与NFS网络挂载,这篇文章介绍内核如何从本地挂载根文件系统,完成系统启动。本地挂载一般用在产品发布的时候,本地挂载的操作也分为两种。
平台:Ubuntu32位虚拟机 目标平台:海思Hi3559V100 工欲善其事必先利其器,在进行嵌入式linux开发的时候需要搭建一个能够调试的环境,在电脑上无疑是最好最方便的了。至于虚拟机怎么搭建就不多说了,这里我用的32位的Ubuntu16.04主要是方便编译之前文章中自己写的OS 首先安装aarch64-linux-gnu工具链
如果您之前编译过EV200的SDK,那么您会发现,编译DV300的过程很类似,软件包直接拷贝,无需重新下载,通常在1-2个小时内能搞定SDK的编译。 DV300的入门会简洁介绍,如果遇到编译错误,请你阅读EV200的编译过程和相应目录下的readme查询解决方法。
Busybox本身包含了很了Linux命令,但是要编译其他程序的话需要手工下载、编译,如果它需要某些依赖库,你还需要手工下载、编译这些依赖库。 如果想做一个极简的文件系统,可以使用Busybox手工制作。
如果大家做过linux系统移植、或者Linux相关开发,对根文件系统这个名词应该很熟悉,在搭建嵌入式开发环境过程中,移植bootloader,移植kernel制作根文件系统是必须要做3件事情。
跟我一起来到故事开始的地方,深入 Linux 系统的启动流程,自己编译内核并制作根文件系统,并使用 QEMU 模拟启动。
之前学习了利用KGDB双机调试内核,这种方式需要在两个主机上,通过串口线进行连接,或者是通过VMware开启两个虚拟机进行调试,对机器要求相对高一些。通过qemu创建虚拟机,然后利用gdb进行调试相对更轻量级一点。 我先在centos7下面配置调试环境,但是centos7下没有qemu_system_x86等命令,所以需要重新编译qemu源码再进行安装,再加上各种依赖问题,于是转用ubuntu进行配置,过程简单了许多。
在制作Initramfs文件系统之前,我先简单介绍下linux各文件系统。linux支持多种文件系统类型,包括ext2,ext3,vfat,jffs,
LXC是Linux containers的简称,Linux Container容器是一种内核虚拟化技术,可以提供轻量级的虚拟化,以便隔离进程和资源。LXC在隔离控制方面依赖于Linux内核的namespace特性,可以为容器绑定特定的cpu和memory节点,分配特定比例的cpu时间、IO时间、内存大小等,为每个容器提供独立的namespace(网络、pid、ipc、mnt、uts)。
文件系统是操作系统用于明确磁盘或分区上的文件的方法和数据结构; 即在磁盘上组织文件的方法。也指用于存储文件的磁盘或分区
BusyBox 是一个集成了一百多个最常用linux命令和工具的软件。BusyBox 包含了一些简单的工具,例如ls、cat和echo等等,还包含了一些更大、更复杂的工具。有些人将 BusyBox 称为 Linux 工具里的瑞士军刀。简单的说BusyBox就好像是个大工具箱,它集成压缩了 Linux 的许多工具和命令,也包含了 Android 系统的自带的shell。BusyBox提供了一个比较完善的环境,可以适用于任何小的嵌入式系统。
忘了到底前几年看的一篇什么busybox的教程,写的极其复杂,以至于让我这么久以来一直不敢再去碰这个东西,直到今天又再次有了这个需求,特来再搞一次,没想到不到俩小时,一次搞定,将这过程记录下来,以后也好有个参考。
rootfs翻译过来就是根文件系统。顾名思义,它属于文件系统范畴,文件系统的作用就是用来管理、储存文件的。文件的概念对于linux来说很重要,不是有一句话叫”一切皆文件“,Linux的一切行为与操作都反映在文件上。 上文我们编译的linux源码提供的是操作系统的“灵魂”(管理和调度逻辑),但还是需要“肉身”(文件系统)来落地实现。所以,你只是编译烧录kernel,是无法正常启动的,还需要再给它搭配一个文件系统。
之前系列的文章介绍了如何编译Uboot、Kernel以及使用默认的ramdisk根文件系统来构建一个完整的嵌入式Linux系统,本篇文章介绍如何从头制作一个放在NAND Flash上的根文件系统。经过我这段时间的总结,rootfs相关的编译、配置等工作还是比较麻烦的。所以你可能会看到一般做核心板的第三方厂家会建议初学者直接使用现成提供的文件系统,比如一个做NUC972核心板的厂家,其文档里这么描述:
Linux ubuntu 4.4.0-142-generic #168~14.04.1-Ubuntu SMP Sat Jan 19 11:26:28 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux
Buildroot是Linux平台上一个构建嵌入式Linux系统的框架,整个Buildroot是由Makefile脚本和Kconfig配置文件构成。可以和编译Linux内核一样,通过buildroot配置,menuconfig修改,编译出一个完整的可以直接烧写到机器上运行的Linux系统软件(包含boot、kernel、rootfs以及rootfs中的各种库和应用程序)。制作的rootfs通常需要包含很多第三方软件,比如busybox,udhcpc,tftp,apache,sqlite,PHP,iptable,DNS等,为避免复杂的移植工作,在buildroot中通过menuconfig配置我们根文件系统中需要的功能,将不需要的去掉,再执行make编译,buildroot就会自动从指定的服务器上下载源码包,自动编译,自动搭建我们所需要的嵌入式根文件系统。
在嵌入式linux开发的过程中,可能会需要需要在现有ramfs中加入文件的需求,此时可以使用cpio命令。 cpio本质上是一种压缩,内核能自动解压它并放到ram中。 前提:
Docker镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含某个软件所需的所有内容,包括代码、库、环境变量、配置文件、运行时环境等。 所有的应用,直接打包成Docker镜像,然后通过镜像创建出容器,然后就可以直接跑起来。
分别是: 1、Makefile:分布在 Linux 内核源代码根目录及各层目录中,定义 Linux 内核的编译规则; 2、配置文件(config.in):给用户提供配置选择的功能; 3、配置工具:包括配置命令解释器(对配置脚本中使用的配置命令进行解释)和配置用户界面(提供基于字符界面、基于 Ncurses 图形界面以及基于 Xwindows 图形界面的用户配置界面,各自对应于 Make config、Make menuconfig 和 make xconfig)。
Linux系统平台上有许多开源的系统构建框架,这些框架方便了开发者进行嵌入式系统的构建和定制化开发,目前比较常见的有Buildroot, Yocto, OpenEmbedded等等。
firefly自带的文件系统,由于缺少一些基本功能模块,因此,我们可以自己手动制作一个ubuntu20.04的文件系统。
在CentOS 6.5操作系统环境下制作一个CentOS 6.5的KVM镜像,安装cloud-init,能自动扩展根分区。
解读:手机安装 kali-nethunter ,实际上是安装一个 安卓 Cyanogenmod 系统 (cm-13等)的 ROM ,然后再安装一个 kali-nethunter 系统,共同存在手机内的重合系统体,在需要使用kali时,手机自动切换根目录(chroot)。
这么一搞,进程就真的被“装”在了一个与世隔绝的房间里,而这些房间就是PaaS项目赖以生存的应用“沙盒”。
提醒:本文已有自动构建的项目支持,请移步到:再续【从零使用qemu模拟器搭建arm运行环境】
容器为什么需要进行文件系统隔离呢? 被其他容器篡改文件,导致安全问题 文件的并发写入造成的不一致问题 Linux容器通过Namespace、Cgroups,进程就真的被“装”在了一个与世隔绝的房间里
根文件系统是Linux内核启动之后挂载的第一个文件系统,上篇文章里已经介绍过,如何使用busybox来制作根文件系统。这篇文章介绍根文件系统制作成功后,如何让内核找到文件系统,并完成挂载,进入到系统命令行终端。
SyterKit 是一个纯裸机框架,用于 TinyVision 或者其他 v851se/v851s/v851s3/v853 等芯片的开发板,SyterKit 使用 CMake 作为构建系统构建,支持多种应用与多种外设驱动。同时 SyterKit 也具有启动引导的功能,可以替代 U-Boot 实现快速启动
在前两次的分享中,我讲解了 Linux 容器最基础的两种技术:Namespace 和 Cgroups。希望此时,你已经彻底理解了“容器的本质是一种特殊的进程”这个最重要
容器为什么需要进行文件系统隔离呢? 被其他容器篡改文件,导致安全问题 文件的并发写入造成的不一致问题 Linux容器通过Namespace、Cgroups,进程就真的被“装”在了一个与世隔绝的房间里,
在某些情况下,我们需要对于内核中的流程进行分析,虽然通过 BPF 的技术可以对于函数传入的参数和返回结果进行展示,但是在流程的调试上还是不如直接 GDB 单步调试来的直接。本文采用的编译方式如下,在一台 16 核 CentOS 7.7 的机器上进行内核源码相关的编译(主要是考虑编译效率),调试则是基于 VirtualBox 的 Ubuntu 20.04 系统中,采用 Qemu + GDB 进行单步调试,网上查看了很多文章,在最终进行单步跟踪的时候,始终不能够在断点处停止,进行过多次尝试和查询文档,最终发现需要在内核启动参数上添加 nokaslr ,本文是对整个搭建过程的总结。
这里介绍一下自己管理自己的Linux桌面的一点经验吧,我觉得还是有不少可取之处的。先来说一下大多数人管理Linux桌面的方法有哪些不方便的地方吧:
1.1在嵌入式系统中的根文件系统与桌面版的根文件系统文件基本上类似,所以用Ubuntu中根文件系统问模板,进行分析:
能看到它分了六层,比如说第一层可能就是安装 centos,后面几层就是安装 redis 所需的缓解经
Docker模型的核心部分是有效利用分层镜像机制,镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。不同 Docker 容器就可以共享一些基础的文件系统层,同时再加上自己独有的改动层,大大提高了存储的效率。其中主要的机制就是分层模型和将不同目录挂载到同一个虚拟文件 系统下。 针对镜像存储docker采用了几种不同的存储drivers,包括:aufs,devicemapper,btrfs 和overlay,以下内容纯属瞎扯淡╮(╯▽╰)╭
镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于运行环境开发的软件,它包含运行某个软件所需的所有内容,包括代码、运行时、库、环境变量和配置文件。
initramfs是编到内核中的一种根文件系统,使用的是cpio格式,处理流程和我们之前介绍的initrd机制的cpio格式的流程几乎一样,
在上一篇文章鸿蒙系统研究之三:迈出平台移植第一步,我们将内核加载并启动,但缺少根文件系统。这篇文章我们来探讨一下根文件系统的制作。
通过有线方式进行升级,叫本地升级,比如通过UART,USB或者SPI通信接口来升级设备固件。
申威 CPU 是从指令集(派生自 Alpha )层面就是自成体系,区别于当前主流的 X86 架构或是 Arm 架构,故当前人们常用的软件均无法直接在申威架构CPU上使用,必须基于源码重新编译、移植甚至重新适配开发。
在si里搜索上图出现的”S3C2410 flash partition”字段,找到位于common-smdk.c中,里面有个数组smdk_default_nand_part[],内容如下所示:
ramdisk.img是编译Android生成的一个镜像文件,最后和kernel一起打包生成boot.img镜像。ramdisk.img中主要是存放android启动后第一个用户进程init可执行文件和init.*.rc等相关启动脚本以及sbin目录下的adbd工具。
联合文件系统(Union File System),2004年由纽约州立大学开发,它可以把多个目录内容联合挂载到同一个目录下,而目录的物理位置是分开的。UnionFS可以把只读和可读写文件系统合并在一起,具有写时复制功能,允许只读文件系统的修改可以保存到可写文件系统当中。
通常而言,Linux的操作系统由两类文件系统组成:bootfs(boot file system)和rootfs(root file system),它们分别对应着系统内核与根目录文件。bootfs层主要为系统内核文件,这层的内容是无法修改的。当我们的系统在启动时会加载bootfs,当加载完成后整个内核都会存到内存中,然后系统会将bootfs卸载掉。
镜像是一种轻量级、可执行的独立软件包, 用来打包软件运行环境和基于运行环境开发的软件 ,它包含运行某个软件所需的所有内容,包括代码、运行时、库、环境变量和配置文件。
领取专属 10元无门槛券
手把手带您无忧上云