近期,Gartner正式发布了2022年数据库魔力象限,从魔力象限看第一军团依旧是AWS、Microsoft、Oracle、Google领先。虽然AWS依旧傲视群雄,但是Microsoft以比较明显的优势排在第二,也是目前唯一对AWS有挑战的厂商。这其中Microsoft的数据库头牌产品SQL Server的贡献居功至伟。
ARP(Address Resolution Protocol,RFC 826)是根据IP地址获取物理地址的一个TCP/IP协议。主机通过将ARP请求广播到网络上的所有主机并接收返回消息来确定目标IP地址的物理地址,同时将IP地址和硬件地址存入本机ARP缓存中,下次请求时直接查询ARP缓存。
Wireshark可以跟踪网络协议的通讯过程,本节通过ARP协议,在了解Wireshark使用的基础上,重温ARP协议的通讯过程。
目前我们已进入保护模式,但依然会受到限制,虽然地址空间达到了4GB,但此空间是包括操作系统共享的4GB空间,我们把段基址+段内偏移地址称为线性地址,线性地址是唯一的,只属于某一个进程。在我们机器上即使只有512MB的内存,每个进程自己的内存空间也是4GB,这是指的虚拟内存空间。一直以来我们都是在内存分段机制下工作的,该模式下如果系统里面的应用程序过多,或者内存碎片过多无法容纳新的进程,则可能会出现进程需要等待,或无法直接运行的局面,而内存分页机制,理论上只要4KB内存就可以让程序运行下去。
在 x86 系统中,内存管理中的分页机制是非常重要的,在Linux操作系统相关的各种书籍中,这部分内容也是重笔浓彩。
物理地址需求 : 在 数据链路层 传输数据帧时 , 必须知道 目的 IP 地址的 MAC 地址 ;
作者简介:baron (csdn:代码改变世界ctw),九年手机安全/SOC底层安全开发经验。擅长trustzone/tee安全产品的设计和开发。 在 MMU 未开启阶段,PC 操作的都是物理地址执行程序,这样看起来一切正常,没啥问题。例如: 取指(到物理地址 0x4000 处取指)、译码、执行 取指(物理地址 0x4004 处取指)、译码、执行 取指(物理地址 0x4008 处取指)、译码、执行 取指(物理地址 0x400C 处取指)、译码、执行 但是假如程序在执行的过程中,你突然打开了 MMU,那么会
之所以这样构造是因为会使操作系统很方便的为每个应用程序构造页表,即虚拟页和物理页映射关系表
CPU 在这里生成的物理地址为 4,把地址发送给内存,然后内存从该地址获取其中保存的字,最后将其发送回 CPU。
" 物理地址空间 “ 是 CPU 处理器 在 ” 总线 " 上 访问内存的地址 ,
快表其实是 TLB,是 CPU 封装在芯片里的一个东西,这个概念我在这篇也有讲到:真棒!20 张图揭开内存管理的迷雾,瞬间豁然开朗
!dd 加上!, ! dd 物理地址 专门用于显示物理地址的.
一、ARP协议简介 简单的说ARP协议就是实现ip地址到物理地址的映射。当一台主机把以太网数据帧发送到位于同一局域网上的另一台主机时,是根据48bit的以太网地址(物理地址)来确定网络接口的。 ARP
这里说的物理地址是内存中的内存单元实际地址,不是外部总线连接的其他电子元件的地址!
什么是内存 1.存储单元 用于存放数据的硬件,程序执行前先放到内存中才能被CPU处理 2.内存地址 给内存存储单元编地址,从0开始每个地址对应一个存储单元,可以按字节编址,也可以按字长编址,一个存储单元一个字节或字长
在 Linux 系统中,采用了虚拟内存管理技术,事实上大多数现在操作系统都是如此!在 Linux 系统中,每一个进程都在自己独立的地址空间中运行,在 32 位系统中,每个进程的逻辑地址空间均为 4GB,这 4GB 的内存空间按照 3:1 的比例进行分配,其中用户进程享有 3G 的空间,而内核独自享有剩下的 1G 空间,如下所示:
作为一个技术人员,不管你日常用的是什么语言,你都应该或多或少的听过c语言。而如果你了解c,那你一定知道它有个,有时可以让你天马行空,有时又可以让你郁郁寡欢的数据类型,是的,它就是指针。
注意这里问的是为什么进程切换比线程慢,而不是问为什么进程比线程慢。当然这里的线程肯定指的是同一个进程中的线程。
CPU发出的地址是虚拟地址,MMU通过页表技术,把虚拟地址转换为物理地址,再去访问物理内存条。
在《图解 | CPU-Cache》一文中介绍了VIVT、PIPT、VIPT三种查找方式。下面分析一下其歧义别名问题。
我们开发出一个系统之后,经常有很多方法来保护我们的系统不受别人非法使用,比如说采用注册码,根据IP地址进行限制等。这些都存在一个问题就是容易给人通过拷贝注册码等手段来非法使用系统,现在这里将讲述如何通过判断用户电脑的物理地址来限制系统的使用,这样,就可以做到只在一台电脑上可以使用该系统(通过注册码),如果系统安装在其它电脑上,因为电脑的物理地址已经改变,所以原来所使用的注册码将失效,这样可以防止了系统的非法拷贝。
本文是关于操作系统中逻辑地址和物理地址之间的区别。计算机操作系统中的内存使用两种不同类型的地址。物理地址是内存的实际地址,如RAM,虚拟地址只是缓存和RAM之间的逻辑地址映射。
内存管理无疑是操作系统最重要的工作之一,本文我们就来详细介绍一下操作系统是如何管理内存的,分段、分页机制又是什么,线性地址、逻辑地址、物理地址、虚拟地址分别指的又是什么。
我们可以通过ring3的段寄存器. 当作GDT表的下标.进行查表. 查询GDT表.
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括: 以虚拟地址(VA)的形式,为应用程序提供远大于物理内存的虚拟地址空间(Virtual Address Space) 每个进程都有独立的虚拟地址空间,不会相互影响,进而可提供非常好的内存保护(memory protection) 提供内存映射(Memory Mapping)机制,以便把物理内存、I/O空间、Kernel Image、文件等对象映射到相应进
上一节内容的学习我们知道了CPU是如何访问内存的,CPU拿到内存后就可以向其它人(kernel的其它模块、内核线程、用户空间进程、等等)提供服务,主要包括:
内存虚拟化是一个很大的话题,最近安全部门发现了一个qemu内存虚拟化的安全漏洞,反馈给云平台让解决,感觉很棘手,引起了我对内存虚拟化的思考,想到什么问题就把思考记录下来。
在某些时候我们需要读写的进程可能存在虚拟内存保护机制,在该机制下用户的CR3以及MDL读写将直接失效,从而导致无法读取到正确的数据,本章我们将继续研究如何实现物理级别的寻址读写。
本文介绍了AAR64内存管理中最重要的内容--内存转换,解释了虚拟地址是如何翻译为物理地址的,翻译表的格式,以及如何管理TLBS。
现代操作系统都采用的是逻辑地址,即我们在程序中定义的地址都是逻辑上的并不是真正的物理地址,原因是因为在多道程序中是不能确定到程序运行后的物理地址的,有可能被其他程序占用,有可能会动态的改变其地址,例如物理地址在02位置,当01位置的数据变大后导致数据02的空间需要被占用,此时物理地址会发生变化。逻辑地址可以让每个进程自己的地址都是连续的即在逻辑上是连续的。
在存储器里以字节为单位存储信息,为正确地存放或取得信息,每一个字节单元给以一个唯一的存储器地址,称为物理地址(Physical Address),又叫实际地址或绝对地址。
对于此现象,我们在前文也知道了,这是由于进程的独立性,子进程在对数据进行修改时,会触发写时拷贝所造成的。但是,假如这里的地址是物理地址的话,同一块地址处却有不同的值,这肯定是不现实的。★因此,我们可以得出这样的结论:
ARP(Address Resolution Protocol)是一种用于解析网络层的IP地址和链路层的物理地址之间关系的协议。它主要用于在局域网中查找目标设备的物理地址,以确保数据包能够正确地从源设备传递到目标设备。
简单的汇编指令 CPU执行后,寄存器中的数据改变为如下: CPU访问内存单元时要给出内存单元的地址。所有的内存单元构成的存储空间是一个一维的线性空间。 这个唯一的地址就是物理地址。 16位结构描述了一
8086的分段寻址,是指一个物理地址由段地址(segment selector)与偏移量(offset)两部分组成,长度各是16比特。其中段地址左移4位(即乘以16)与偏移量相加即为物理地址。例如,06EFh:1234h,表示段地址为06EFh,偏移量为1234h,物理地址为06EF0h + 1234h = 08124h。在计算物理地址时如果发生上溢出,8086处理器舍弃进位。例如,FFFFh:0010h所对应的物理地址为00000h.
先解释下一个困扰了我很久的问题:虚拟地址(vitural address)和逻辑地址(logical address)的区别。
ACPI这个单词,用电脑用多了的同学应该或多或少能在系统的报错信息等地方见过它。它表示表示高级配置和电源管理接口(Advanced Configuration and Power Management Interface)。通过ACPI规范,就能查询计算机硬件的一些信息。
进程调度能提高CPU利用率和计算机响应速度。为了实现这一性能,必须将多个进程保存在内存中,也就是说内存共享。
一个典型的CPU(此处讨论的不是某一具体的CPU)由运算器、控制器、寄存器(CPU工作原理)等器件构成, 这些器件靠内部总线相连。之前所说的总线, 相对于CPU内部来说是外部总线内部总线实现CPU内部各个器件之间的联系, 外部总线实现CPU和主板上其他器件的联系
操作系统 页式存储 页与块之间的关系详解 操作系统 页式存储 页 块 逻辑地址 物理地址 块号 页号 以下这些概念在刚开始学的时候简直要逼疯我了,因为不同书籍不同作者就会有不同的叫法,比如说页内地址有叫页偏移的,块有叫页框的。。。 反正各种不爽。如果你也有这种状况,那不好意思,我先得说明一下,你还是适应一下我的叫法。因为这篇文章我说了算~~~~(有没有很霸气) 页式存储 注意页和块的对象的不同 对程序进行分页存储 对内存进行分块存储 文章最后会给出我总结的页和块的关系 逻辑地址和物理地址 a) 逻辑地址:由
最近一直在学习内存管理,也知道MMU是管理内存的映射的逻辑IP,还知道里面有个TLB。
进入了线程这部分内容,我们需要了解更多的知识,大体就是线程概念,线程与进程的区别和联系、线程控制、线程创建、线程终止、线程等待、线程分离、线程安全、线程同步,除此之外我们还得学习互斥量、条件变量、POSIX信号量以及读写锁,最后我们还会介绍一些关于多进程的设计模式比如单例模式等,然后还会了解一下线程池的概念!
DMA remapping就是在DMA的过程中IOMMU进行了一次转换,MMU把CPU的虚拟地址(va)转换成物理地址(pa),IOMMU的作用就是把DMA的虚拟地址(iova)转换成物理地址(pa),MMU转换时用到了pagetable,IOMMU转换也要用到io pagetable,两者都是软件负责创建pagetable,硬件负责转换。IOMMU的作用就是限制DMA可操作的物理内存范围,当一个PCI设备passthrough给虚拟机后,PCI设备DMA的目的地址是虚拟机指定的,必须要有IOMMU限制这个PCI设备只能操作虚拟机用到的物理内存。
内存管理的必要性 很早之前计算机只能运行单个进程,就算运行批处理程序,也是棑好对,一个一个的进行处理,不存在多个进程并发运行,这时候内核对于内存管理相对比较简单,直接把物理内存地址拿过来是使用即可。 随着计算机演进,支持多进程的OS,多个进程都都使用同一个物理地址空间,很容易多个进程之间相互干扰而引起进程的不可预期的行为。为了解决这个问题,CPU中的MMU(内存管理单元)引入了虚拟地址空间。以32位操作系统经为例,每个进程都可以拥有4G的寻址空间,当进程需要内存时候,通过转换技术和虚拟地址进行关联。MMU通
因此,现代计算机系统通常把各种不同存储容量、存取速度和价格的存储器按照一定的体系组成多层结构,以解决存储器容量、存取速度和价格之间的矛盾。
一般情况下,Linux系统中进程的4GB内存空间被划分为2个部分-------用户空间和内核空间,大小分别为0~3G,3~4G。用户进程通常,只能访问用户空间的虚拟地址,不能访问内核空间的虚拟地址。
许多年以前,当人们还在使用DOS 或者更古老的操作系统的时候,计算机的内存还非常小,一般都是以K 为单位进行计算的,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序。
廖威雄,目前就职于珠海全志科技股份有限公司从事linux嵌入式系统(Tina Linux)的开发,主要负责文件系统和存储的开发和维护,兼顾linux测试系统的设计和持续集成的维护。
领取专属 10元无门槛券
手把手带您无忧上云