9月4日,腾讯云正式发布多脸融合新产品,该产品在之前单脸融合的基础上,新增多脸融合和选脸融合。同时,内置新型算法,让融合效果表现更优异。...选脸融合 支持多脸、选脸融合,最多支持指定融合3张人脸,可应用在全家福、与明星合照等多人场景,增加活动的互动趣味性。...支持鉴黄鉴政:如果客户有鉴黄鉴政的需求,需要检测并过滤用户上传的色情、恐暴、政治敏感人物等,可推荐使用腾讯云的图像内容审核接口 ,通过设置相应的阈值来限制敏感人物、低俗照片的使用,提高活动的合规性和安全性...2.png 2-应用于文娱、美妆、换脸类小程序、APP 为文娱、美妆、换脸等小程序、APP提供单脸、多脸融合功能,间接帮助拉新、导流、提升活跃与留存。...1.png 【限时福利】 现购买人脸融合活动授权费、QPS、资源包,享有 9月限时8折特惠。 【小程序体验】 “腾讯云AI体验中心”小程序已同步上线单脸/多脸融合产品,扫码即可体验。
笔者简述: 这篇论文主要还是在于深度估计这块,深度估计由于硬件设备的不同是有很多方法的,双目,RGBD,激光雷达,单目,其中最难大概就是单目了。...我们提供了具有挑战性的 Euroc 数据集的结果,并表明我们的方法比直接融合单目 SLAM 的深度提高了 92% 的准确性,与最佳竞争方法相比提高了 90% 1....相反,单目相机便宜、重量轻,代表了最简单的传感器配置来校准。 不幸的是,由于缺乏对场景几何形状的明确测量,单目 3D 重建是一个具有挑战性的问题。...在这项工作中,我们展示了如何从使用密集单目 SLAM 时估计的嘈杂深度图中大幅减少 3D 重建中的伪影和不准确性。为实现这一点,我们通过根据概率估计的不确定性对每个深度测量值进行加权来体积融合深度图。...2.2.深度融合 绝大多数 3D 重建算法都基于将深度传感器提供的深度图融合到体积图 [13、15、17] 中。
58同城 架构师 编辑整理:陈佳琪、李元 内容来源:DataFunTalk 导读:58同城作为分类信息网站,服务覆盖多个领域,如房屋租售、招聘求职、二手买卖等等,不同的业务有不同的特点,这使得多业务融合推荐成为一大挑战...推荐感知:虽然用户的目标单一,但是如何做到推荐结果的多样性就需要对其优化。 58app首页推荐业务 ( 多品类推荐 ) 主要面临的挑战在于: 如何满足用户对于不同品类的兴趣?...( 用户兴趣问题 ) 推荐的业务比例如何和平台的业务比例进行匹配?( 流量分配 ) 是推荐单一品类效果好,还是推荐不同品类的混排?( 混排策略 ) 如何平衡CTR和多样性?...兴趣策略 这个优化主要针对第一个挑战:强兴趣下的多业务融合。 常见的推荐系统,如新闻推荐、视频推荐、商品推荐等都是要先建立用户和商品之间的联系,然后通过适当的算法进行匹配。...目前负责 APP 首页业务信息流推荐,致力于通过融合多业务、多策略推荐系统的迭代升级,支持流量分发,优化连接效率,提升用户体验。 今天的分享就到这里,谢谢大家。
FM和FFM模型是最近几年提出的模型,凭借其在数据量比较大并且特征稀疏的情况下,仍然能够得到优秀的性能和效果的特性,屡次在各大公司举办的CTR预估比赛中获得不错...
(读论文)推荐系统之ctr预估-LR与GBDT+LR模型解析 特征交叉而提出的FM和FFM虽然能够较好地解决数据稀疏性的问题,但他们仍停留在二阶交叉的情况。...1.3 树模型对稀疏离散特征,处理较差 参考: 腾讯大数据:CTR预估中GBDT与LR融合方案 推荐系统遇上深度学习(十)–GBDT+LR融合方案实战 GBDT只是对历史的一个记忆罢了,没有推广性,...2 LightGBM + LR融合案例 一段核心代码,整体流程为: 源数据 -> 标准化 -> 训练LGM模型 -> 预测训练集+验证集的每个样本落在每棵树的哪个节点上 -> LGB的节点特征合并成为新的训练集
本篇文章有别于传统的多因子研究,我们并未将重点放在阿尔法因子的挖掘上,而是通过对股票组合的权重优化计算,找到了在市值中性、行业中性、风格因子中性约束下的最优投资...
超易用的免费在线AI视频换脸你有没有梦想过成为电影明星?或者想制作一些搞笑的恶作剧视频来娱乐朋友?通过免费的在线AI换脸视频工具,这些愿望都可以实现!...特别说明,swapfaces.ai支持多人换脸。...优点:易于使用面部融合效果自然界面简洁缺点:视频换脸只能更换一个人的脸,无法更换多人的脸偶尔会出现故障带有水印无法在搭建网站时使用相关工具适用人群:教育人员私人定制社交媒体创作者安全性:所有用户数据在静态和传输过程中均已加密只有授权人员可以访问用户数据定期进行安全审计...Myimg.ai —— 高级AI换脸工具Myimg.ai的特点是: 它可以实现精确的微调和个性化定制,具有个性化定制、精确面部定位、可调节的融合强度、面部表情操控和背景去除等多项功能。...FaceSwapper —— 充满个性的AI换脸工具FaceSwapper.ai 是一款功能全面的免费在线AI换脸视频软件,深受广大用户喜爱。
单电没有反光板距离,所以重新做新的,当然所有全画幅单反肯定都有反光板结构空位更长。所以所有全画幅单反镜头都可以转接。...单电之所以是单电要缩小体积去掉反光板零件不可能那个零件的位置继续空着吧,那怎么缩小体积。所以必须用全新的镜头标准。...下面推荐镜头的时候,难免有焦段的事情,这里找几个焦段的图补补课。...A和E的对比 A卡口系统,它本来就是胶片单反时代的产物,由于本身法兰距较长,机身和镜头设计就注定小不到哪里去,尼康的F卡口单反也是这个道理,做不到体积更小,性能也不能对微单形成优势,继续发展A卡口除了满足...接下来是副厂,推荐一个: 健身 24-70MM 5K大概的价格,我很推荐 和SONY有合作,所以眼控这些完美支持 总之这个镜头很好就对了 一直小气也不是个问题,我最后推荐一个: (SONY
在学习过程中感谢@贝尔塔的模型融合方法,以及这篇文章(作者是章凌豪)。对于两位提供的信息,感激不尽。同时还有Kaggle上一些关于ensemble的文章和代码,比如这篇。
NewBeeNLP原创出品 公众号专栏作者@上杉翔二 悠闲会 · 信息检索 上次我们看了『推荐系统 + GNN』 万物皆可Graph | 当推荐系统遇上图神经网络 今天来看看『推荐系统...,避免推荐结果局限于单一类型 「可解释性(explainability)」:连接用户的历史记录和推荐结果,从而提高用户对推荐结果的满意度和接受度,增强用户对推荐系统的信任。...这样可以让KG和RC在某种程度上融合的更加深入。...:https://www.kdd.org/kdd2016/papers/files/adf0066-zhangA.pdf 也可以直接在公众号后台回复『0019』直接获取 发自16年KDD,将KG与CF融合做联合训练...然后从知识库中提取的特征融合到collabrative filtering 中去,即与左边的用户反馈结合起来一起做CF进行训练就可以了,训练损失函数会用pair-wise的偏序优化。
但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。...这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同的权重,将多个推荐算法的结果进行加权,即可得到结果:...2) 交叉融合法 交叉融合常被称为Blending方法,其思路是在推荐结果中,穿插不同推荐模型的结果,以确保结果的多样性。...通过特征融合的方法能确保模型不挑食,扩大适用面。 5)预测融合法 推荐算法也可以被视为一种“预测算法”,即我们为每个用户来预测他接下来最有可能喜欢的商品。...总结和展望 推荐系统中的融合技术是非常重要的一个环节,在实战中,灵活运用融合技术可以发挥各个算法的长处,满足多样的用户需求,大大提升推荐结果的质量,达观数据在此方面将不懈努力,探索出更多更好的应用。
Java单例模式推荐写法--双重检测机制实现单例 双重检测机制不仅可以既线程安全问题,又解决懒加载问题,同时保证了效率。...package com.joshua317.pattern; /** * 推荐使用:双重检测机制实现单例模式 * 既解决线程安全问题,又解决懒加载问题,同时保证了效率。
但是其中一类方法非常特殊,我们称为多模型融合算法。融合算法的意思是,将多个推荐算法通过特定的方式组合的方法。融合在推荐系统中扮演着极为重要的作用,本文结合达观数据的实践经验为大家进行系统性的介绍。...这里总结一些常见的融合方法: 1)线性加权融合法 线性加权是最简单易用的融合算法,工程实现非常方便,只需要汇总单一模型的结果,然后按不同算法赋予不同的权重,将多个推荐算法的结果进行加权,即可得到结果:...2) 交叉融合法 交叉融合常被称为Blending方法,其思路是在推荐结果中,穿插不同推荐模型的结果,以确保结果的多样性。 这种方式将不同算法的结果组合在一起推荐给用户 ?...通过特征融合的方法能确保模型不挑食,扩大适用面。 5)预测融合法 推荐算法也可以被视为一种“预测算法”,即我们为每个用户来预测他接下来最有可能喜欢的商品。...总结和展望 推荐系统中的融合技术是非常重要的一个环节,在实战中,灵活运用融合技术可以发挥各个算法的长处,满足多样的用户需求,大大提升推荐结果的质量,达观数据在此方面将不懈努力,探索出更多更好的应用。
用户对产品评价数据的稀疏性是影响推荐系统质量的主要因素之一。针对稀疏性问题,提出了几种建议技术,并考虑了辅助信息,提高了评级预测精度。...本文提出了一种新的上下文感知推荐模型——卷积矩阵因式分解(convmf),将卷积神经网络(cnn)与概率矩阵因式分解(pmf)相结合。...我们对三个现实数据集的广泛评估表明,即使在评级数据非常稀疏的情况下,convmf仍显著优于最先进的推荐模型。我们还证明convmf成功地捕获了文档中单词的细微上下文差异。...完整复现源码获取方式: 关注微信公众号 datayx 然后回复 推荐系统 即可获取。 ?
对于搜索和广告来说,排序的目标都是相对比较明确的,但推荐不同,推荐的目标就没那么明确了。可能会有同学说,推荐目标不是用户喜欢么,当然是按照用户兴趣排序啦。...所以在推荐领域,工程师们的目标其实是比较迷茫的。但建模的过程当中又必须要有一个明确的目标,所以业内还是用点击率和转化率来作为推荐的目标。大家可以思考一个问题,点击率高转化率高就意味着推荐效果好吗?...所以如果我们同时预测了多个目标,也没办法在排序的时候按照多个目标排序,除非我们想办法把它们融合到一起。这也就是今天文章的主题,多目标的情况下怎么进行融合排序的问题。...融合方案 融合方案本身非常简单,大家都和拍脑袋差不太多,并没有高下之分,只有效果好不好的差别。...细想会发现一个问题,我们排序的时候用的是pctr * pcvr,这是两个目标融合的结果。
欢迎来到《每周CV论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。...,即检测到的关键点然后计算两个人脸形状之间的变形,再添加图像融合等后处理技术,目前在天天P图等应用中的换脸算法如此。...文章引用量:60+ 推荐指数:✦✦✦✦✧ ? [4] Korshunova I, Shi W, Dambre J, et al....推荐指数:✦✦✦✦✦ ? [5] Jin X, Qi Y, Wu S....使用时将A的特征输入解码器B从而实现换脸,感兴趣的可以参考开源代码[7]进行尝试。 推荐指数:✦✦✦✦✦ ? [6] Korshunov P, Marcel S.
然后先压制住内心的激动,前面都是在控制台利用交互点点鼠标完成了融合操作,现在我们先来看看,API的人脸融合接口要怎么用咧~ 当前人脸融合提供两个接口,分别支持单脸融合与选脸融合,两个接口的出参入参不尽相同...,我们一个一个来看: 人脸融合相关接口 接口名称 接口功能 FaceFusion 人脸融合 FuseFace 选脸融合 FaceFusion 俗称单脸融合: image.png 总结一下入参: 腾讯云接口公共参数...活动ID、素材ID,告诉云我用哪个活动,哪张素材图 其他信息:输入图,这个图拿来跟素材图融合;返回的图片格式,url还是base64;输入图是否需要鉴政 单脸融合只涉及一张输入图、一张素材图,按要求填入参数即可...FuseFace 俗称选脸融合、又名多脸融合: image.png 入参与单脸融合多有相似,下面总结一下两者不同的地方: MergeInfos.N:输入信息数组 image.png 用上面多脸融合的例子来说...~ 按官方推荐,我们可以使用腾讯云人脸检测接口协助获取人脸框信息 因此,我们实际使用选脸融合之前,要先用人脸检测接口,获取目标人脸框信息,再将此作为入参,填入输入数组内,继而完成人脸融合请求 人脸检测接口入参较为简单
在本文中,我们提出了单样本说话脸化身(OTAvatar),通过泛化可控的三平面渲染方案来构建人脸化身,如此即可从单张参考肖像构建个性化化身。...动画器结构 我们使用两阶段策略来实现单样本化身重建:1)建立 3D 人脸生成器;2)使生成器可控。...实验 我们在照片级说话脸视频的动画化上评估 OTAvatar 并与支持身份泛化的 SOTA 动画方法进行了比较。...所有方法均使用正视角的第一帧肖像来提取身份特征,并利用连续帧的表情和不同相机视角下的姿态生成说话脸。该主体不包含于任何方法的训练集中。 消融实验 表 3:反演解耦超参数的消融实验。...联合训练无法在单样本化身构建中维持身份信息。
对数据有限的冷启动用户进行有效推荐是一个固有挑战。...现有的深度推荐算法利用用户的内容特征和行为数据来产生个性化的推荐列表,但由于存在以下挑战,使得在冷启动用户身上往往面临着显著的性能下降:(1)冷启动用户可能与现有用户存在非常不同的特征分布。...基于此,本文提出了一个名为Cold-Transformer的推荐模型来缓解以上问题。 图1:本文提出的基于双塔框架的模型示意图。首先,用户的原始嵌入从非序列特征中提取出来。...此外,为了利用冷启动用户的少数行为数据并表征用户上下文,本文建议同时用标签编码对正负反馈的融合行为进行建模,因为这将编码更多的行为信息。...最后,为了进行大规模的工业推荐任务,本文基于双塔结构,将用户和目标物品进行解耦。
本文提出采用大模型LLM从用户的异构行为信息中提取和融合异构知识,然后将异构知识和推荐任务相结合,在LLM上执行指令微调进行个性化推荐。...2.方法 看图说话,主要流程: 基于数据中的不同用户的各种异构行为数据,以用户为中心,筛选出该用户的异构行为 将这些行为通过prompt工程构建成文本输入到chatgpt用来将异构行为融合,得到完整的自然语言表达...-6b 2.1 异构知识融合 在异构知识融合阶段,利用LLM丰富的语义知识和强大的推理能力来促进异构知识的融合。...接下来,在知识融合模块中,使用ChatGPT对行为文本进行异构知识融合,获得异构知识文本。基于用户行为生成的异构知识将用于LLM的微调和推荐阶段。...预测结果可以输出为自然语言形式的直接推荐,也可以用作语义特征,通过与传统推荐模型中的现有特征连接来增强推荐效果。
领取专属 10元无门槛券
手把手带您无忧上云