“ 在大数据时代面对海量的本地文件时,随着云存储的普及,越来越多的用户需要把海量数据从传统的本地存储迁移到新的分布式云基础设施上,这就需要快速高效安全的迁移方法。”
云数据迁移(Cloud Data Migration,简称 CDM)是腾讯云提供的 TB - PB 级别的数据迁移上云服务。CDM 使用专用迁移设备将数据从您的数据中心快速高效地迁移上云,并且采用 RAID 、加密等多种方式对迁移过程的数据进行安全保障, 最大程度降低数据损坏和泄露的风险。
在数字化转型浪潮中,如何存储和利用好数据,是企业面临的首要问题。相比于传统互联网全面拥抱云,产业互联网在数字化转型过程中,通常第一步是利用云存储来归档数据。
Intel Security针对云计算部署的最新研究给企业同时带来了好消息和坏消息。好消息是,根据对1200多名IT决策者的调查显示,云技术相关的数据泄露事故发生频率很低。但坏消息是,这些决策者称迁移挑战是他们面临的最常见问题。从安全的角度来看,当转移工作负载和数据到云计算时肯定会有挑战,无论是从内部数据中心到云还是从云提供商到另一个云提供商。 第一个云迁移挑战是确保根据政策和数据分类要求只有适当类型的数据迁移到云端。很多企业发现敏感数据出现在云端,而他们并没有计划将其放在云中,这通常是因为与项目团队缺乏沟
近年来,不断上涨的云成本一直是一个反复出现的话题。我们看到企业云在 2020 年期间激增;在
在云计算客户的拓展过程中,会面临客户的各种需求。其中最常见的需求包括,如何在云计算上构建客户的业务系统,搭建基础架构;另外一个就是如何实现客户数据的高效存储,包括存储新产生的用户数据,以及将现有的用户数据平滑迁移到云计算上来,提供更方便,更快捷的访问。
11月1日,NineData 多云数据管理平台正式上线,构建全球领先的多云数据管理平台。NineData提供数据备份、复制、对比和企业级SQL开发服务,让您的数据管理更安全更高效。本次发布会演示了如何通过NineData的数据管理平台,实现1分钟配置企业级数据备份。
在传统企业中,他们会把自己的数据存储在线下的数据中心,由于有很多企业都是自建或者租用的IDC,所以面临着在人员、技术、运维、性能、故障、软件授权、租用等等多方面的难题,凭借企业自身的能力,在解决各种难题时难免会有力不从心。
如果准备更换或升级服务器、进行服务器数据迁移,遵循服务器数据迁移计划可以简化流程。没有一个,在系统和格式之间传输数据的过程中,将面临高昂的风险,最终会导致代价高昂的停机时间、文件损坏、丢失和放错位置、兼容性问题等。
一、Amazon S3介绍 Amazon Simple Storage Service (Amazon S3) 是一种对象存储,它具有简单的 Web 服务界面,可用于存储和检索 Web 上任何位置、任意数量的数据。它能够提供 99.999999999% 的持久性,并且可以在全球大规模传递数万亿对象。 客户将 S3 用于批量存储库、“数据湖”,用于分析、备份和还原、灾难恢复和无服务器计算。许多原生云应用程序甚至使用 S3 作为主要存储。 借助 Amazon 的云数据迁移选项,客户可将大量数据轻松地移入或
从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。刚刚过去的 2021 年双 11,就有超过 8 亿消费者参与。
就当前而言,移动PB级的数据对企业来说仍然是一件难事,可以按照以下步骤来操作,尽量减少风险和成本,并最大程度地提高灵活性。 接受云部署的企业需要具有成本效益和实用性的将企业数据迁移到云端的方法。鉴于将大规模企业数据集无间断地和准确地移动到任何地方,这将面临很大的挑战,其任务可能是一个漫长,复杂,危险的过程。 并不是每个组织都有足够的专用带宽来传输数PB的数据,而不会导致核心业务的性能下降,也并不具有足够的备用硬件迁移到云端。在某些情况下,处于物理隔离位置的组织或不具有成本效益的高速互联网连接的组织面临
在测试环境中做了3轮数据迁移的演练,最终到了生产环境中,还是出现了不少问题,经过大半夜的奋战,终于是数据都迁移成功了。 1)共享存储的配置问题 共享存储使用NFS来共享存储,但是在实际操作中发现配置出了问题,原因是因为两台服务器上的用户不同在,目标机器上没有任何写权限。 -rw-r--r-- 1 3160 dba 6608 Jun 26 23:35 tmp_gunzip.sh -rw-r--r-- 1 3160 dba 624 Jun 26 23:30 tmp_gzip
一、问题的提出 互联网有很多“数据量较大,并发量较大,业务复杂度较高”的业务场景,其典型系统分层架构如下: (1)上游是业务层biz,实现个性化的业务逻辑 (2)中游是服务层service,封装数据访
上一篇文章我们介绍了服务化带来的一系列问题。以及我们解决服务雪崩、链路过长问题难定位、服务调用关系错综复杂这几个问题的经历。
无论是垂直分表还是水平分表,都会涉及到数据迁移的问题,数据迁移要满足几个条件,首先数据要完整、准确,迁移过程不要影响现有业务,为了保证系统的持续性最好也不要停机迁移。
互联网系统,经常会有数据迁移的需求。系统从机房迁移到云平台,从一个云平台迁移到另一个云平台,系统重构后表结构发生了变化,分库分表,更换数据库选型等等,很多场景都需要迁移数据。
当我们在初创公司或者公司的一个新的业务线的初期,通常来说不会采用分库分表的,但是随着业务发展,就会有需要分库分表的情况产生。那么针对于之前单库表中的数据我们如何迁移到新的分库分表上呢?我们最先想到的方案应该就是发公告停机停服的数据迁移。 停机停服数据迁移 比如我们已经准备好某一天要进行数据迁移了,那么我会们在当天发布公告,比如通告一下用户,凌晨12点到早上6点系统升级,服务暂不可用。那么到了凌晨12点,所有服务停机,并观察数据库中是否还有数据写入变更删除等操作,如果发现现在数据库中的数据已经静止了,那么一部
上一篇文章《ShardingJdbc分库分表实战案例解析(上)》中我们初步介绍了使用ShardingJdbc实现订单数据分散存储的分库分表方法,在本篇文章中将重点介绍在不停服的情况下实现数据分片存储的在线扩容。具体将以如下两个常见的场景进行演示:1)、尚未进行分库分表的单库单表系统如何平稳的实施分库分表方案;2)、已经实施过分库分表方案的系统,由于数据量的持续增长导致原有分库分表不够用了,需要二次扩容的情况。
因为我们的数据不是静态的,所以我们不能随便写个job迁移就好了。需要确保一些迁移上的标准
在上一篇中我们讲了通用优惠券系统的设计,这篇主要是以优惠券重构后,我们现有系统接入到该通用优惠券系统过程中遇到的数据迁移与一致性问题相关的思考与实践。我们早期的优惠券系统使用的是ckv的存储,后来为了统一,全部改为使用redis储存了,这里首先一个数据迁移点是 ckv----->redis的迁移,另一个数据迁移点是上海redis----->深圳redis。之所以会有redis --->redis的迁移,主要是刚开始我们redis是和别人混部,选择了一个上海的机房,由于整个服务几乎都部署在广深地区,所以需要迁回来,并且单独一个redis集群存储,不在混部。
众所周知,企业采用多云可以节省成本,并提高生产力。但是多云基础设施很复杂,具有多家云计算供应商提供的不同服务和条款。企业在采用多个云平台时,很容易在自己没有意识到的情况下造成资金的浪费。
参考博客1给出了一种所谓的平滑帅气的秒级扩容的架构方案,但我个人却认为,这个看似没有什么问题的方案在实际中几乎没什么用处,业界也几乎不会用这种方案来进行扩容(分库分表)。为了便于说明这一点,本文先简单回顾下该方案,然后分析该方案为什么没有用,最后给出三种业界广泛使用的分库分表的平滑扩容方案。
在星爷的《大话西游》中有一句非常出名的台词:“曾经有一份真挚的感情摆在我的面前我没有珍惜,等我失去的时候才追悔莫及,人间最痛苦的事莫过于此,如果上天能给我一次再来一次的机会,我会对哪个女孩说三个字:我爱你,如果非要在这份爱上加一个期限,我希望是一万年!”在我们开发人员的眼中,这个感情就和我们数据库中的数据一样,我们多希望他一万年都不改变,但是往往事与愿违,随着公司的不断发展,业务的不断变更,我们对数据的要求也在不断的变化,大概有下面的几种情况:
虽说实践了不少的数据迁移项目,但是从我的感触来说,一些很细小的差别就会造成整个数据迁移方案的大不同。数据是系统的核心命脉,所以对于DBA来说,保证数据的一致性和准确性是一个最基本的要求。对此我的一个基本观点就是高可用的需求除非特殊需要,一般都还是需要一个维护窗口的,这种方式更为保守,但是更为保证。 而在Datapump迁移中还是遇到了不少的小问题,也算是一些心得或者建议吧。 1)如果是跨平台的数据迁移,在升级前需要得到一个清单,包含哪些失效的对象,是否需要重新编译,如果不确认,在迁移之后就会
注意点: 1、在完成数据迁移之前,上游业务依然是访问旧数据库的。 2、研发一个数据迁移工具,进行离线数据迁移。 3、不断刷新“追加日志” 4、写一个数据校验脚本。将新旧库数据进行比对,直到追平。 5、在架构的时候就应该考虑到有一天要迁移,所以这时候就可以平滑迁移了。比方说:使用虚ip的方式。
由于业务的扩展或者其他原因,常常会有迁移系统数据库的场景,对于有大量用户7*24小时不间断使用的系统,如何不宕机实现数据库迁移,这是个很有挑战的话题。
为了保存数据想到秃头? 担心遇到自然灾害数据会丢失? 别着急!我来为你解答! 上对象存储 COS ! 腾讯云对象存储 COS 是腾讯云提供的一种存储海量文件的分布式存储服务,用户可通过网络随时存储和查看数据。具备高扩展性、低成本、可靠和安全等优点。在提供数据存储服务的同时,还可对数据进行处理和加速,减少存储与带宽成本的压力,提高访问性能,助力用户进行数字化转型。 使用方法 COS 提供了多方面的应用场景及最佳实践,包括访问控制与权限管理、性能优化、数据迁移、数据直传与备份、数据安全域名管理等实践场景,能
COS 提供了多方面的应用场景及最佳实践,包括访问控制与权限管理、性能优化、数据迁移、数据直传与备份、数据安全域名管理等实践场景,能够帮助您更快速、更方便地使用 COS 来实现您的多样化业务需求。
数据库上层都有一个微服务,服务层记录“业务库”与“数据库实例配置”的映射关系,通过数据库连接池向数据库路由sql语句。
今天群里有人问起,刚好做过相关的工作,特此分享一下当时的工作内容和感受。 背景 大概说一下这个事情的背景。在2013年大概4月份,人人网打算做一次大规模的数据迁移——评论服务。所谓评论就是指各种资源下的“评论文字”,比如照片的评论、Blog的评论、分享的评论、音乐的评论…… 早期人人网的各个开发小组各自为政,每个团队几乎都实现了一个评论服务,有各自不同的功能和数据结构,但是大体上还算相似。当时,业务部门希望能够集中这些数据做一些统一的管理,比如权限管理(控制谁能看什么评论)、比如数据内容推荐(基于用户评论人
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
当系统访问量和数据量超过之前对评估预期时,涉及到对数据库重新分片。大部分场景中往往不能直接映射到新对数据分片策略中,分片策略修改需要伴随数据迁移。
上一篇关于DynamoDB的介绍中,有一个特别亮点,就是它无需停机就可以动态扩容。
有关HBase集群如何做不停服的数据迁移一直都是云HBase被问的比较多的一个问题,目前有许多开源的工具或者HBase本身集成的方案在性能、稳定性、使用体验上都不是很好,因此阿里云提供了BDS迁移服务,可以帮助云上客户实现TB级数据规模不停机迁移
前言 作者在腾讯一直从事数据相关领域的系统运营和运营平台的建设工作。目前主要负责 TDW 的系统运营,TDW 是腾讯内部最大的离线处理平台,也是国内最大的 HADOOP 集群之一。 在运营这么大集群的时候,运营面临各种各样的难题,在解决这些难题的过程中,团队提炼出来的一个运营理念,用两句话去描述。 用建模的思路去解决运营的难题 运营的问题怎么解决?你必须用一些数据建模的办法,把这个难题解析清楚,然后我们再去考虑运营平台建设。 运营平台支撑模型运作 不是为了建设运营平台而建设,而是它必须有一定的运营理念。下文
数据迁移时, 为了保证数据的一致性, 往往伴随着停服, 此期间无法给用户提供服务或只能提供部分服务. 同时, 为了确保迁移后业务及数据的正确性, 迁移后测试工作也要占用不少时间. 如此造成的损失是比较大的.
随着国际火车票业务的高速发展,订单量快速增长,单数据库瓶颈层面的问题逐渐显露,常规的数据库优化已无法达到期望的效果。同时,原先的底层数据库设计,也存在一些历史遗留问题,比如存在部分无用字段、表通过自增主键关联和各个应用直连数据库等问题。
伴随着不断扩张的业务量,在数据库层面一般会经历数据拆分。解决问题的第一步,就是重新评估 DB 表结构设计的合理性。
《58同城数据库架构设计思路》(下) WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城分享了《大数据量下,58同城mysql实战(上)》的主题 DTCC(Database Tech Conference China)2015,中国数据库技术大会举办在即,会上58同城将分享《数据库架构师做什么?58同城数据库架构设计思路(下)》,大会内容抢先看,一起来看看58同城怎么玩数据库架构设计的。 58同城数据库架构设计思路 (1)可用性设计 解决思路:复制+冗余 副作用
在进行版本升级时,Sql不兼容,数据库升级经常报错,需要重复对比哪里执行过了。这种问题如何解决?
面试官:如何来设计动态扩容的分库分表方案? 面试官心理剖析: 这个问题主要是看看你们公司设计的分库分表设计方案怎么样的?你知不知道动态扩容的方案?
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
一、缘起 (1)并发量大,流量大的互联网架构,一般来说,数据库上层都有一个服务层,服务层记录了“业务库名”与“数据库实例”的映射关系,通过数据库连接池向数据库路由sql语句以执行: 如上图:服务层配置
大家好,我是58沈剑,今天我分享的主题是《58怎么玩数据库架构》,我的PPT页数非常少,讨论的问题非常的聚焦。 一、数据库的基本概念 基本概念就一页PPT,让大家就一些数据库方面的概念达成一致。 首
本文从通用的数据上云场景,以及友商云数据迁移场景出发,介绍基于腾讯云对象存储(COS)的上云步骤,包括迁移前的环境准备工作,云上的配置与迁移工具的实施,数据的一致性校验,云上业务的切换与验证。
如果是第一种场景,数据迁移过程中可以停止写入,可以采用诸如elasticsearch-dump、logstash、reindex、snapshot等方式进行数据迁移。实际上这几种工具大体上可以分为两类:
上一篇文章《应用接入ES(一)-Springboot集成ES》我们讲述了应用集成ES的方式,以及实现各种查询和更新操作,那么问题就来了,既然是查询和更新,肯定要有数据,数据哪里来?怎么来?
领取专属 10元无门槛券
手把手带您无忧上云