打开文章迎面而来的是一堆用来浪费读者时间的文字,介绍了加密流量的趋势和作用。同时还放了一幅红红的大图,图上面一把大锁十分醒目,“要加密就买锁,安全可靠还防撬!”。看在是安全牛专业推荐,耐着心思继续看下去。
人工智能技术具有改变人类命运的巨大潜能,但同样存在巨大的安全风险。攻击者通过构造对抗样本,可以使人工智能系统输出攻击者想要的任意错误结果。从数学原理上来说,对抗攻击利用了人工智能算法模型的固有缺陷。本文以全连接神经网络为例来介绍对抗样本对人工智能模型作用的本质。
每年双11是电商零售行业的盛事,也是物流快递业的大考。在我印象中,过去每年双11过后,都会伴随着物流爆仓、快递小哥累到不行的新闻。每年双11我都会参与剁手,前几年来自外省的包裹要等一周甚至两周才收到,但今年双11我买的东西尽管到货没有平日快,却也在两三天内陆陆续续到达了。翻了下朋友圈,发现关于包裹延迟到达的吐槽也比往年少了许多,双11物流这个老大难问题似乎已经得到顺利解决。 快递终于不再是双11的瓶颈 今年双11快递行业比往年“好过”,有些出人意料。 今年双11天猫交易额达到1682亿,全网交易额达25
iPhone X发布已有2天,在中国收到的评论呈现出前所未有的两极分化。 好的给予了溢美之词: “苹果 iPhone 发布会超全记录:iPhone X 技术颠覆,价格贵哭”、“iPhone X发布!致敬乔布斯,没有比它更美好的方式了”; 不好的还是说苹果没创新: “史上最贵iPhoneX的尴尬:设计不及小米,技术晚于华为,买吗?”、“除了涨价 iPhone 8已经没有颠覆性的创新”。 排除连iPhone 8和iPhone X都不区分的“恶意差评”,我们来看看iPhone X最被差评的地方在哪里:全面屏、无
当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。一般我们总会看看历史销量高不高,用户评论好不好,然后再去下单。 过去不久的双11、双12网络购
摘自:毕马威大数据挖掘 微信号:kpmgbigdata 刚刚过去的双11、双12网络购物节中,无数网友在各个电商网站的促销大旗下开启了买买买模式。不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧。一般我们总会看看历史销量高不高,用户评论好不好,然后再去下单。 然而各位一定也有所耳闻,买的不如卖的精,刷单的、刷评论的始终横行网上,没准你看到的评论就是卖家自己刷出来的。事实上,许多精明的淘宝卖家会在双十一等网购高峰期售卖“爆款”,“干一票就撤”,这
刚刚过去的双11、双12网络购物节中,无数网友在各个电商网站的促销大旗下开启了买买买模式。不过,当你在网上选购商品时,同类的商品成千上万,哪些因素会影响你选购某件商品呢?商品评论一定是一个重要的参考吧
一、引言 随着人工智能(artificialintelligence, 简称AI)的技术突破,现今的计算技术可从大数据平台中挖掘出有价值的信息,从而为人们在决策制定、任务执行方面提供建议对策与技术支持,将专业分析人员从复杂度高且耗时巨大的工作中释放。 企业与用户每天面临各种安全威胁,无论是钓鱼邮件中的恶意链接还是恶意软件的非法操作等,日新月异的攻击手段给用户安全带来了极大的困扰,造成了严重的安全威胁。由于现有的检测技术与防御系统已渐渐无法应对多变的挑战,而以机器学习(machinelearning,简称ML
“授人以鱼不如授人以渔”,为了提升黑盒模型的透明度,提升模型在高度动态网络环境下的鲁棒性、可维护性,我们通过无监督学习、可解释人工智能(eXplainableAI, XAI)、字符序列相似性分析等方法,实现了自动化的攻击特征提取工具——XAIGen。目前,XAIGen项目已经开源,项目地址为https://github.com/oasiszrz/XAIGen,项目开源信息可见前文《XAIGen:自动化攻击特征提取的项目开源啦》。
早在今年年初,国内外安全厂商已监测到利用开放了ADB调试接口的安卓设备进行传播的挖矿蠕虫,近期绿盟伏影实验室威胁被动感知系统再次捕获到利用ADB接口进行传播的具有DDoS功能的僵尸网络。经过样本分析人员研究发现,该僵尸网络家族是Mirai的又一新变种(作者命名为Darks),并且与年初的挖矿样本扫描行为部分具有高度相似性。不同的是年初的样本功能为挖矿,而当前样本功能为DDoS,推测与最近一段时间虚拟货币行业不景气有关。
《当人工智能遇上安全》系列博客将详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安全也是块硬骨头,但我也试试,看看自己未来四年究竟能将它学到什么程度,漫漫长征路,偏向虎山行。享受过程,一起加油~
来自 | FreeBuf.COM · 参考来源 | Securelist · 编译 | Avenger 机器学习已经渗透到了人类活动的所有领域,它不仅在语音识别、手势识别、手写识别和图像识别上起着关键的作用,这些领域如果没有机器学习在现代医学、银行、生物信息和存在任何质量控制的行业中都是一个灾难。甚至机器没有学习和生成的能力,连天气预报都无法做出。但是此时我想澄清一些问题——关于机器学习在网络安全领域的使用中存在的一些误解。 误解一 网络安全中的机器学习是新鲜玩意 由于某
机器学习已经渗透到了人类活动的所有领域,它不仅在语音识别、手势识别、手写识别和图像识别上起着关键的作用,这些领域如果没有机器学习在现代医学、银行、生物信息和存在任何质量控制的行业中都是一个灾难。 甚至机器没有学习和生成的能力,连天气预报都无法做出。但是此时我想澄清一些问题:关于机器学习在网络安全领域的使用中存在的一些误解。 误解一:网络安全中的机器学习是新鲜玩意 由于某种原因,在网络安全中的人工智能技术变成了过去流行的东西。如果你没有长期关注过这个主题,你可能会认为这是新的东西。 一些场景:第一个机器学习算
双尾蝎APT组织(又名:APT-C-23),该组织从 2016 年 5 月开始就一直对巴勒斯坦教育机构、军事机构等重要领域展开了有组织、有计划、有针对性的长时间不间断攻击.其在2017年的时候其攻击活动被360企业安全进行了披露,并且其主要的攻击区域为中东,其中以色列与巴勒斯坦更受该组织的青睐。
ChatGPT是一个强大的人工智能聊天机器人,它使用大量的数据收集和自然语言处理与用户“交谈”,感觉像是和正常的人类对话。它的易用性和相对较高的准确性让用户可以利用它做任何事情,从解决复杂的数学问题,到写论文,创建软件和编写代码,以及制作令人着迷的视觉艺术。
这是作者新开的一个专栏,主要是回答读者在AI安全的学习、工作、编程和实践中的问题,并形成总结帮助更多初学者,希望对您也有所帮助!由于作者能力有限,属于班门弄斧,但其宗旨是希望对初学者有帮助,说得不好的地方还请各位老师和大佬海涵,欢迎大家多多补充和交流。
伴随产业互联网的不断推进,数据已经成为企业发展的核心资产,如何守护好企业的数据资产安全,也由此成为产业升级下所有企业务必要思考的全新命题。 在6月11日-12日召开的2019腾讯安全国际技术峰会上,腾讯安全专家研究员彭思翔带来议题《AI在数据安全中的实践》,介绍了腾讯安全数盾以AI为核心,构建的包含外部攻击防护、数据交换保护、内部防泄露等全流程的数据安全保护方案。 (腾讯安全专家研究员彭思翔在TenSec 2019现场演讲) 腾讯安全国际技术峰会由腾讯安全发起,腾讯安全科恩实验室和腾讯安全平台部联合
AI 科技评论按:随着人工智能研究的不断发展,由机器学习模型在背后提供支持的功能越来越多地开始商业化,最终用户的生活里机器学习能造成的影响也越来越大。这时候,机器学习的安全和隐私问题也就越来越明显,谁
上月底,权威科学杂志Nature发表了一篇关于谷歌人工智能程序AlphaGo击败欧洲围棋冠军的文章,其中介绍了AlphaGo程序的细节,它实际上是一个结合了深度学习与树搜索(tree-search)的程序。虽然,对弈发生于去年十月,但还是在网络及朋友圈引起不小轰动:人类智力最后的骄傲崩塌了吗? 在对问题进行肯定或否定的回答前,我们先来了简单了解一下这些概念。 FreeBuf百科:什么是人工智能、机器学习和深度学习 图片来源:《从机器学习谈起》 人工智能 AI 作为计算机学科的一个分支,按字面理解,
近年来,在技术革新、监管加强、用户需求提升的三重作用下,游戏行业进入发展转型期,并涌现出游戏精品化、产业跨界升级、游戏出海三大趋势。随着游戏行业的繁荣,游戏厂商面临越来越多的黑灰产攻击、内容违规等游戏安全难题,由于技术实力和响应能力不足,很多厂商时常陷入事倍功半的困境中,游戏口碑和营收也遭受重大损失。据统计,业务安全和内容安全涉及的黑灰产每年给游戏开发商带来数十亿元规模的损失。
随着“学生减负”号召的提出,不少“鸡娃”家长们发现,今年的课下辅导门路似乎已经不再好找了。尤其是英语学习,离开了老师,孩子们连单词关都很难突破,使用智能手机查单词更多时候反倒增加了学习的诱惑,更难提升学习的效果,这时候有一个专门用于英语学习的智能翻译工具就显得尤其重要了。
摘要 2016 年 5 月起至今,双尾蝎组织(APT-C-23)对巴勒斯坦教育机构、军事机构等重要领域展开了有组织、有计划、有针对性的长时间不间断攻击。 攻击平台主要包括 Windows 与 Andr
网络安全领域中的加密流量的检测是一个老生常谈的话题,随着人工智能的发展,给同样的问题,带来了不同的解决思路。
迁移学习实现将特定领域的模型应用到多个目标领域中,能够促进目标领域模型的学习成长,并降低目标领域内对于数据量和类型的要求,实际上就是利用已有先验信息来优化模型学习内容。迁移学习在小数据环境、智能终端上具有广阔的应用空间,迁移学习需要将在数据量充足的情况下学习到的知识,迁移到数据量小的新环境中,能够通过发现大数据和小数据问题之间的关联,把知识从大数据中迁移到小数据问题中,从而打破人工智能对大数据的依赖。
网络托管巨头GoDaddy周一披露了一起数据泄露事件,导致共有120万活跃和非活跃客户的数据遭到未经授权的访问,这是自2018年以来曝光的第三起安全事件。
当我们在享受AI技术带来的便捷与高效的同时,是否考虑过技术漏洞带来的严重后果?试想如果有人恶意利用AI技术去干扰IT系统的正常工作,结果会有多可怕呢?
近年来,伴随着深度学习技术的成熟以及计算机算力的增长,人工智能技术在各行业的业务场景中实现了快速的普及和落地。在人工智能技术进一步落地实践的背景下,将会为行业带来什么样的变革与技术创新,成为了大家共同关心的问题。
CDN是通过在全球范围内分布式地部署边缘服务器将各类互联网内容缓存到靠近用户的边缘服务器上,从而降低用户访问时延并大幅减少穿越互联网核心网的流量。互联网业务使用CDN已经成为一种必然的选择。传统网站防护基本上都是保护源站,客户购买防火墙、WAF等产品就可以保护自己核心业务的内容不被恶意窃取。但传统防护方式并不能完全满足业务流量通过CDN分发的场景:
近年来,随着机器学习、深度学习等人工智能技术的迅猛发展,其在图像识别、语音识别和自然语言处理等领域已经得到大规模应用,可以为传统方法很难解决或无法适用的问题提供有效的方案,也已经成为网络安全领域中的热门研究方向,比如将人工智能应用于恶意加密流量的检测就是一种行之有效的方法。
网络安全领域的独特对抗属性给人工智能应用落地带来了重重困难,但我们并不认为这最终会阻碍人工智能成为网络安全利器。我们尝试分析了人工智能在网络安全应用里的潜在困难,并试着解决它们。
机器学习是当前科技行业的一大流行词,原因很充分:它代表着计算机学习方式的一大跃进。福布斯近日盘点了机器学习技术的十大使用案例。 从根本上说,机器学习算法是指机器先获得一组“教学”数据,然后被要求利
作为国内最大的社交巨头,腾讯如何运用AI 技术应对安全挑战?AI时代下,安全攻防又有哪些新变化?
【新智元导读】3月29日,阿里巴巴副总裁、达摩院机器智能技术实验室副主任华先胜出席 2018 新智元 AI 产业跃迁峰会,做了题为《深入行业,智创未来》的演讲。华先胜分享了视觉智能技术在阿里巴巴的应用实例,对智能设计、拍照搜索、视觉诊断和城市大脑四个领域做重点介绍。本文带来精彩演讲实录。 华先胜:非常高兴有机会来到这里分享阿里巴巴在人工智能方面的研发和实践,前不久我们看到美国总结了二十项在未来三十年可能会改变世界的技术,我把前十项列在了这里。可以看到多多少少都和人工智能直接或者间接相关,也就是说人工智能会是
一、背景 通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适的变换函数,将输入的二维人脸图像变换到特征空间,从而唯一确定对应人的身份。 在web应用攻击检测的发展历史中,到目前为止,基本是依赖于规则的黑名单检测机制,无论是web应用防火墙或ids等等,主要依赖于检测引擎内
通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适的变换函数,将输入的二维人脸图像变换到特征空间,从而唯一确定对应人的身份。
过年前网站推出一个叫“网藤杯智能安全机器人养成计划”的活动,刚开始以为是一个养蛙类型的活动,研究过后发现,这是一个上传数据拿奖品的活动,看着礼品还挺诱人的,作为薅羊毛专业户,我必须吐槽一把了…… 看看
前一篇从个人角度介绍英文论文实验评估(Evaluation)的数据集、评价指标和环境设置如何撰写。这篇文章将带来USENIXSec21恶意代码分析的经典论文——DeepReflect,它通过二进制重构发现恶意功能,来自于佐治亚理工学院。希望这篇文章对您有所帮助,这些大佬是真的值得我们去学习,献上小弟的膝盖~fighting!同时文章末尾有我的论文感受和精句摘要,欢迎各位老师和博友批评指正。
勒索软件(Ransomware)攻击、身份盗窃,以及在线信用卡欺诈,这些都可能是具有毁灭性的,然而它们只是众多类型的恶意软件与网络攻击中的冰山一角。如果你从来没有成为破坏活动的受害者,那算你走运,但不要因此自鸣得意。
大数据文摘作品 作者:Priya Dwivedi 编译:朝夕、吴双、钱天培 2016年年末,Amazon无人超市横空出世。在这家无人超市,店内的相机能够自动追踪你拿取的商品;完成购物后,你无需排队等候收银,只用直接走出超市。 自此之后,阿里和京东也已相继加入战局,先后推出无人超市体验店。一时间,无人超市的概念已实现了大规模普及。 无人超市的“黑科技”到底是什么呢?今天,文摘菌就为大家科普其中最重要的一环——基于计算机视觉技术的物体识别。 首先,让我们分析一下实现无人超市的两大难点。 难点一:把商品加入购物
场景一:狂欢的大伙 抢奖品、抢大降价促销、各种买买买,可是... 总有不少网友感觉离奖品太遥远、离打折促销很遥远,有种还没开始就结束的滋味,那到底谁是真正的双11“杀手”呢? PS:今年的双11还有一
该系列文章将系统整理和深入学习系统安全、逆向分析和恶意代码检测,文章会更加聚焦,更加系统,更加深入,也是作者的慢慢成长史。漫漫长征路,偏向虎山行。享受过程,一起加油~
4 月 7 日,来自清华的 RealAI(瑞莱智慧)发布了 RealSafe 人工智能安全平台,随之推出的测试结果令人惊讶:通过平台对微软、亚马逊云服务的人脸比对演示平台进行测试显示,基于 RealSafe 平台生成的对抗样本「噪音」能够极大干扰两大主流人脸比对平台的识别结果。
一年一度的全民购物即将来临,估计现在不少朋友的淘宝天猫的购物车上早已选好了准备双十一剁手的各种产品了,都希望在11.11当天抢到心仪已久的“降价”了的物品。 然而11.11果真是一年中最优惠的时候吗?
第一类就是AI算法自身的安全问题,比如现在我们的图像识别,图像欺骗,自己用PS定制一张图片,加一些像素进去,会导致自动驾驶出问题。
2019年11月7日,腾讯Techo开发者大会在京举办,云安全技术与应用分论坛上,来自腾讯安全平台部的安全策略专家聂利权分享了对企业安全运营现状的思考,并介绍了腾讯安全治理平台通过智能威胁研判,助力网络安全运营提效的探索和实践。
人工智能的飞速发展正在将世界带入一个全新的维度,但这同时也将网络世界的正邪对抗推入下一个战场。 美国当地时间8月10日,由 GeekPwn 主办的 CAAD Village 登陆世界顶级极客大会 DEF CON。腾讯安全云鼎实验室在 CAAD Village 上带来前沿议题分享,云鼎实验室安全专家张壮、史博以基于卷积神经网络的多形态恶意软件检测为例,分享了安全厂商应用人工智能之后对抗病毒免杀技术的效果;同时还站在攻击方的视角,介绍了恶意软件使用了生成式对抗网络之后,可绕过应用机器学习检测模型的案例。为人工
近日有卡饭网友向火绒提出12个问题,从产品性能到核心技术。这些问题非常棒,无论提问者是网友还是友商,火绒团队都非常愿意一起探讨。我们尝试一一作答如下。
来源 | 携程技术中心 作者 | 岳良 背景 通俗地讲,任何一个的机器学习问题都可以等价于一个寻找合适变换函数的问题。例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适的变换函数,将输入的二维人脸图像变换到特征空间,从而唯一确定对应人的身份。 在web应用攻击检测的发展历史中,到目前为止,基本是依赖于规则的黑名单检测机制,无论是web
领取专属 10元无门槛券
手把手带您无忧上云