选自Medium 作者:JP Tech等 机器之心编译 毕业季找工作了?如果想应聘机器学习工程师岗位,你可能会遇到技术面试,这是面试官掂量你对技术的真正理解的时候,所以还是相当重要的。...经过很多面试(尤其是与学生的面试)之后,我收集了 12 个深度学习领域的面试问题。我将在本文中将其分享给你。...先稍微回顾一下机器学习的本质,要做机器学习,我们需要有一个数据集。没有数据我们怎么学习呢?一旦有了数据,机器需要找到数据之间的关联。...假设我们的数据是温度和湿度等天气信息,我们希望机器执行的任务是找到这些因素与我们的爱人是否生气之间的关联。这听起来似乎并无关联,但机器学习的待办事项有时候确实很可笑。...总结 上面就是我常在面试过程中向参加面试的人提出的 12 个有关深度学习的面试问题。但是,根据每个面试者的情况不同,提问的方式可以也会各不相同,另外也会有其它一些根据面试者的经历而提出的问题。
从 2009 年到 2021 年,从千万交易额到千亿交易额,双 11 已经开展了 12 年。如今,每年的双 11 以及一个月后的双 12,已经成为真正意义上的全民购物狂欢节。...是什么样的数据库撑起了 2021 年的双 11 双 12 的稳定进行?...《数据 Cool 谈》第三期,阿里巴巴大淘宝技术部双 12 队长朱成、阿里巴巴业务平台双 11 队长徐培德、阿里巴巴数据库双 11 队长陈锦赋与 InfoQ 主编王一鹏,一同揭秘了双 11 双 12 背后的数据库技术...在水平扩展的集群中,每个节点服务数十个分区,每个分区使用单独线程响应的事务处理模型避免了锁竞争的开销。据悉,在大促场景下,Tair 提供了几乎直线般的 P99 访问延时。...发展近 20 年,淘宝积累了千亿级别的订单数量,“千亿级别的订单量的索引列,全部丢进内存的话,我的机器成本肯定是兜不住的。”
吴恩达 Cousera 机器学习课程Andrew Ng 的机器学习课程(Machine Learning | Coursera)是很多人的启蒙课程,难度适中且完全免费。...另一个比较直接的观察是如果大家在知乎上搜索“机器学习如何入门?”...,大部分答案都提到了 Andrew 的这门入门课程,所以这是一门绝对的口碑课程,详细讨论可以参考:微调:为何国人迷恋吴恩达的机器学习课?。...周志华《机器学习》周志华老师的《机器学习》也被大家亲切的叫做“西瓜书”。虽然只有几百页,但内容涵盖比较广泛。然而和其他人的看法不同,我建议把西瓜书作为参考书而不是主力阅读书。...这本书更适合作为学校的教材或者中阶读者自学使用,入门时学习这本书籍难度稍微偏高了一些。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 源 | ynaughty 每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕...确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的Li Hui的这篇博客,讲述了如何选择机器学习的各种方法。...其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习中的一些基本算法以及它们的原理。...总结 本文利用二维交互图帮助大家理解机器学习的基本算法,希望能增加大家对机器学习的各种方法有所了解。所有的代码可以在参考中找到。欢迎大家来和我交流。...Victorjs 2D向量库 推荐一些机器学习的路线图 https://ml-cheatsheet.readthedocs.io/en/latest/ 10大机器学习算法 https://www.gitbook.com
概述 机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测。
华盛顿大学 Pedro Domingos 教授的“A Few Useful Things to Know about Machine Learning”这篇论文总结了机器学习研究者和从业者的 12 个宝贵经验...机器学习中最大的问题就是“维度灾难”! 除了过拟合,机器学习中最大的问题就是维度灾难。...这正是机器学习项目最重要的部分,通常也是最有趣的部分,直觉、创造力、「魔术」和技术同样重要。 初学者常常会惊讶于机器学习项目实际上花在机器学习上的时间很少。...还有很多其它的方法,就不一一列举了,但是总的趋势是规模越来越大的集成学习。在 Netflix 的奖金激励下,全世界的团队致力于构建最佳视频推荐系统。...因此,关键问题不在「模型是否可表示」,而「模型是否可学习」以及尝试不同的模型(甚至是集成模型)是很重要的。 12 .“相关性”并非就是“因果关系”!
是EM算法的核心,称为Q函数 EM算法可以用于生成模型的非监督学习,生成模型由联合概率分布P(X,Y)表示,可以认为非监督学习训练数据是联合概率分布产生的数据,X为观测数据,Y为未观测数据。...蒙特卡罗算法,混合高斯、协同过滤、k-means 参考: 《机器学习》 《统计学习方法》 Expectation-Maximum(EM算法)
12 个宝贵经验,包括需要避免的陷阱、需要关注的重点问题、常见问题的答案。...机器学习中最大的问题就是“维度灾难”! 除了过拟合,机器学习中最大的问题就是维度灾难。...这正是机器学习项目最重要的部分,通常也是最有趣的部分,直觉、创造力、「魔术」和技术同样重要。 初学者常常会惊讶于机器学习项目实际上花在机器学习上的时间很少。...还有很多其它的方法,就不一一列举了,但是总的趋势是规模越来越大的集成学习。在 Netflix 的奖金激励下,全世界的团队致力于构建最佳视频推荐系统。...因此,关键问题不在「模型是否可表示」,而「模型是否可学习」以及尝试不同的模型(甚至是集成模型)是很重要的。 12 .“相关性”并非就是“因果关系”!
Apache PredictionIO 是为开发者和工程师设计的开源机器学习服务器,基于 Apache Spark、HBase 和 Spray 构建。...它基于可扩展的开源服务,如 Hadoop、HBase(以及数据库),Elasticsearch、Spark 并实现了 Lambda 架构。...社区贡献) http://predictionio.apache.org/community/projects/#docker-installation-for-predictionio 快速上手 推荐引擎模板快速入门指南
以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。...《Machine Learning》(《机器学习》) 作者Tom Mitchell是CMU的大师,有机器学习和半监督学习的网络课程视频。...《机器学习及其应用》 周志华、杨强主编。来源于“机器学习及其应用研讨会”的文集。...这本书讲了很多机器学习前沿的具体的应用,需要有基础的才能看懂。如果想了解机器学习研究趋势的可以浏览一下这本书。关注领域内的学术会议是发现研究趋势的方法嘛。...极牛的书,可数学味道太重,不适合做机器学习的 《All Of Statistics》 机器学习这个方向,统计学也一样非常重要。
#机器学习库sklearn中,我们使用metrics方法实现: import numpy as np from sklearn.metrics import accuracy_score print(...) y_pred = svc.predict(X_test) print("y_pred:\n",y_pred) print(accuracy_score(y_test, y_pred)) #第五步机器学习评测方法...:交叉验证 (Cross validation) #机器学习库sklearn中,我们使用cross_val_score方法实现: from sklearn.model_selection import...cross_val_score scores = cross_val_score(svc, iris.data, iris.target, cv=5) print(scores) #第六步机器学习:...模型的保存 #机器学习库sklearn中,我们使用joblib方法实现: # from sklearn.externals import joblib import joblib joblib.dump
97.78% 94.37%/93.71% 多项式贝叶斯 66.07%/65.79% 96.24%/91.11% 84.27%/81.12% 看来,对三组数据高斯贝叶斯算法在三个数据中最好,我们让他与以前学习过的分类算法做个比较
之前发布了多款ubuntu系统的ROS学习镜像,主要是基于校内和学生实验编程实践出发。 如果是机器人初学者,还是推荐使用最主流操作系统windows学习这款ROS1和2。 ?...win10环境可以预装如下机器人操作系统 ros1-melodic ros1-noetic ros2-dashing ros2-foxy 并且也会支持后续ros更新而无需更换操作系统或者预装linux系统
http://www.jikexueyuan.com/ 极客学院,各种学习资料,但是视频大部分收费的,如果有特别想看的课程可以学习,实在不行看看wiki。...http://www.imooc.com/course/list 慕课网,前端课程比较好,推荐看里面的沙龙课程,知道一线前言公司用什么,怎么用。...http://www.chuanke.com/ 百度传课,百度3000w收购的一个类12k平台,好多其他平台收费的在这里可以找到免费版本。...https://channel9.msdn.com/ channel9平台是微软的一个主要的传播微软技术的平台,另一个好处是可以学习英文,IOT课程值得推荐。...还有一批专业的IOS开发,移动开发,大数据的,前端的专业社区就不一一推荐了。
1、推荐系统涉及的知识 电子商务业务知识、网站架构运营、机器学习算法、数学建模、大数据平台… 2、推荐系统涉及的常见算法 聚类、关联模式挖掘、大规模矩阵运算、文本挖掘、复杂网络和图论计算等… 3...、推荐系统分类 Ⅰ、基于应用领域分类 电子商务推荐系统、社交好友推荐系统、搜索引擎推荐系统、信息内容推荐系统...... Ⅱ、基于设计思想分类 基于协同过滤的推荐系统、基于内容的推荐系统、基于知识的推荐系统...、混合推荐系统...... Ⅲ、基于使用何种数据分类 基于用户行为的推荐系统、基于用户标签的推荐系统、基于社交网络数据的推荐系统、基于上下文信息的推荐系统...... 4、实现协同过滤的步骤 ①收集用户偏好数据...,基于邻域的推荐算法又分为基于物品推荐算法和基于用户推荐算法。 ...、根据用户标签进行推荐、基于隐语义的推荐算法等。
本章主要围绕机器学习的推荐实践过程以及评测指标,一方面告诉我们如何优化我们的模型;另一方面告诉我们对于分类的算法,使用精确率和召回率或者F1值来衡量效果更佳。...最后还强调了下,在大部分的机器学习中,训练样本对模型的准确率都有一定的影响。...机器学习最佳实践 针对垃圾邮件分类这个项目,一般的做法是,首先由一堆的邮件和是否是垃圾邮件的标注,如[(邮件内容1,是),(邮件内容2,否),(邮件内容3,是)...]。...接下来如果想要优化机器学学习模型,可以有下面几种: 1 搜集更多的数据 2 从邮件的地址中寻找新的feature 3 从邮件内容中寻找新的feature 4 基于更复杂的算法检测错拼词 推荐的步骤是...: 1 先通过一些简单的算法快速实现,然后通过交叉验证选择一个比较好的模型 2 通过学习曲线,确定是属于高偏差的情况、还是高方差的情况,再来决定是否增加样本、或者增加特征 3 错误分类的分析,通过分析那些被分错的样本
内容来源:2018 年 5 月 26 日,美团点评技术专家杨一帆在“饿了么技术沙龙·第25弹【搜索推荐】”进行《Why WAI: 美团点评搜索推荐机器学习平台》演讲分享。...阅读字数:3308 | 9分钟阅读 摘要 本次分享主要介绍如何从机器学习实践过程中不断总结经验,搭建集数据处理、特征工程、模型训练、打分预测、实时监控、在线学习等步骤为一体的机器学习平台WAI,以及该平台如何赋能业务不断优化搜索推荐用户体验...美团点评的机器学习应用大部分还是围绕业务来开展,包括搜索推荐、金融、外卖、打车、广告等。 机器学习通用流程 机器学习整个流程包含几个部分。...Why 流派对比 机器学习系统可以分为平台派和工具派。...数据算法层则是向深度模型结构的可视化,还有自动机器学习的方向发展。服务层也正在考虑模型打分服务化。 以上为今天的分享内容,谢谢大家!
日前,kdnuggets 上的一篇文章对比了三大公司(谷歌、微软和亚马逊)提供的机器学习服务平台,对于想要启动机器学习项目的公司或是数据科学新手来说,提供了非常多的指导和建议。...现在让我们来看看市场上最好的机器学习平台都有哪些服务。...什么是机器学习服务 机器学习服务(Machine learning as a service, MLaaS)包含机器学习大多数基础问题(比如数据预处理,模型训练,模型评估,以及预测)的全自动或者半自动云平台的总体定义...在本文中,我们将首先概述 Amazon,Google 和 Microsoft 的主要机器学习服务平台,并比较这些供应商所支持的机器学习 API。...这并不是如何使用这些平台的说明,而是在开始阅读平台的文档之前所需要做的功能调研。 针对定制化的预测分析任务的机器学习服务 ?
领取专属 10元无门槛券
手把手带您无忧上云