首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Object Detection in Foggy Conditions by Fusion of Saliency Map and YOLO

    在有雾的情况下,能见度下降,造成许多问题。由于大雾天气,能见度降低会增加交通事故的风险。在这种情况下,对附近目标的检测和识别以及对碰撞距离的预测是非常重要的。有必要在有雾的情况下设计一个目标检测机制。针对这一问题,本文提出了一种VESY(Visibility Enhancement Saliency YOLO)传感器,该传感器将雾天图像帧的显著性映射与目标检测算法YOLO (You Only Look Once)的输出融合在一起。利用立体相机中的图像传感器对图像进行检测,利用雾传感器激活图像传感器,生成深度图来计算碰撞距离。采用去雾算法对基于区域协方差矩阵的显著性图像帧进行质量改进。在改进后的图像上实现了YOLO算法。提出的融合算法给出了Saliency Map和YOLO算法检测到的目标并集的边界框,为实时应用提供了一种可行的解决方案。

    01

    深度学习时代下的RGB-D显著性目标检测研究进展

    摘要:受人类的视觉注意力机制启发,显著性目标检测任务旨在定位给定场景中最吸引人注意的目标或区域。近年来, 随着深度相机的发展和普及, 深度图像已经被成功应用于各类计算机视觉任务, 这也为显著性目标检测技术提供了新思路。通过引入深度图像, 不仅能使计算机更加全面地模拟人类视觉系统, 而且深度图像所提供的结构、位置等补充信息也可以为低对比度、复杂背景等困难场景的检测提供新的解决方案。鉴于深度学习时代下RGB-D显著目标检测任务发展迅速,旨在从该任务关键问题的解决方案出发,对现有相关研究成果进行归纳、总结和梳理,并在常用RGB-D SOD数据集上进行不同方法的定量分析和定性比较。最后, 对该领域面临的挑战及未来的发展趋势进行总结与展望。

    04

    细粒度图像分割 (FGIS)

    如今,照片逼真的编辑需要仔细处理自然场景中经常出现的颜色混合,这些颜色混合通常通过场景或对象颜色的软选择来建模。因此,为了实现高质量的图像编辑和背景合成,精确表示图像区域之间的这些软过渡至关重要。工业中用于生成此类表示的大多数现有技术严重依赖于熟练视觉艺术家的某种用户交互。因此,创建如此准确的显著性选择成为一项昂贵且繁琐的任务. 为了填补熟练视觉艺术家的空白,我们利用计算机视觉来模拟人类视觉系统,该系统具有有效的注意力机制,可以从视觉场景中确定最显着的信息。这类问题也可以解释为前景提取问题,其中显着对象被视为前景类,其余场景为背景类。计算机视觉和深度学习旨在通过一些选择性研究分支对这种机制进行建模,即图像抠图、显著目标检测、注视检测和软分割。值得注意的是,与计算机视觉不同,深度学习主要是一种数据密集型研究方法。

    04

    NIPS 2018 | 哪种特征分析法适合你的任务?Ian Goodfellow提出显著性映射的可用性测试

    随着机器学习的复杂度和影响力不断提升,许多人希望找到一些解释的方法,用于阐释学得模型的重要属性 [1, 2]。对模型的解释可能有助于模型满足法规要求 [3],帮助从业人员对模型进行调试 [4],也许还能揭示模型学到的偏好或其他预期之外的影响 [5, 6]。显著性方法(Saliency method)是一种越来越流行的工具,旨在突出输入(通常是图像)中的相关特征。尽管最近有一些令人振奋的重大研究进展 [7-20],但是解释机器学习模型的重要努力面临着方法论上的挑战:难以评估模型解释的范围和质量。当要在众多相互竞争的方法中做出选择时,往往缺乏原则性的指导方针,这会让从业者感到困惑。

    02

    轻松生产短视频——腾讯多媒体实验室横屏转竖屏技术

    腾讯多媒体技术专栏 伴随手机等智能设备的广泛使用以及短视频平台的兴起,越来越多的“竖屏”视频开始占据人们的视野。目前,许多“竖屏”视频仍是由16:9等宽高比的“横屏”视频剪辑而成,然而传统的静态裁剪和补充黑边等视频宽高比转换算法已经不能满足用户对横屏到竖屏的内容转换需求。对此,多媒体实验室“智媒”平台提出了一种基于显著性的视频裁剪方法,它可以根据视频的内容实现横屏到竖屏的自动裁剪。与竞品相比,本文方法可以获得更智能、更稳定的裁剪结果。 1、背景 1.1背景介绍 快速发展的智能传感器和多媒体技术让人们

    04

    基于2.5/3D的自主主体室内场景理解研究

    摘要随着低成本、紧凑型2.5/3D视觉传感设备的出现,计算机视觉界对室内环境的视景理解越来越感兴趣。本文为本课题的研究提供了一个全面的背景,从历史的角度开始,接着是流行的三维数据表示和对可用数据集的比较分析。在深入研究特定于应用程序的细节之前,简要介绍了在文献中广泛使用的底层方法的核心技术。之后根据基于场景理解任务的分类,回顾了所开发的技术:包括全局室内场景理解以及子任务,例如场景分类、对象检测、姿势估计、语义分割、三维重建、显著性检测、基于物理的推理和提供性预测。随后,总结了用于评估不同任务的性能指标,并对最新技术进行了定量比较。最后对当前面临的挑战进行了总结,并对需要进一步研究的开放性研究问题进行了展望。

    01

    什么样的点可以称为三维点云的关键点?

    这个工作来自于中国香港科技大学和中国香港城市大学。我们知道,随着三维传感器以及相关扫描技术的进步,三维点云已经成为三维视觉领域内一项十分重要的数据形式。并且随着深度学习技术的发展,许多经典的点云深度学习处理方法被提出来。但是,现有的大多数方法都关注于点云的特征描述子学习。并且,在稠密的点云数据帧中,如果对所有点云都进行处理,将会带来巨大的计算和内存压力。针对这种问题,提取部分具有代表性的关键点则成为一种自然而且有效的策略。但是,什么样的点可以称为三维点云中的关键点呢?这个问题仍然是一个开放的、没有明确答案的问题。

    03

    基于深度学习的高分辨率遥感图像目标检测技术目前的研究现状

    高分辨率遥感目标检测目前的研究成果主要分为两类,特定目标检测和一般目标检测。特定目标检测主要包括城市[1]、机场[2]、建筑[3]、飞机[4]、舰船[5]-[6]、车辆[7]-[8]、云[9]、海冰[10]等遥感图像中比较重要和有价值的目标。一般目标检测研究的问题主要是目标检测中面临的难题,主要面临的问题主要有:类不平衡[11]、复杂背景[12]、目标的尺度变化[13]、特殊视角[14]-[16]、小目标[17]-[18]等问题。下面分别的一般目标检测和特定目标检测进行介绍(特定目标检测当然还包含其他许多类,这里我们不能一一列出。不少文献还提出了数据集,这里我们只介绍方法。

    06
    领券