首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    安卓UI自动化工具4399AT元素定位之图像识别

    目前在测试领域中安卓UI自动化,维护成本是非常高的,那有什么方法可以降低维护成本呢?我个人看法有几个,通用的就是使用PO模式设计,跟开发约定命名规则,还有同一个控件可以多个元素定位,图像识别,开发录制工具,降低编写脚本门槛,AI自动化,这些是在排除功能需求频繁变更的因素之外,以下对大家比较有疑问的进行简单解释下: 同一个控件多个元素定位是指不同的版本中同一个按钮的元素如res-id不一样,这时候只要这个控件的定位输入多个res-id,这个没有找到就找下一个,这样脚本就可以在多个版本使用,脚本的复用性就很高了; 降低脚本编写门槛,就是通过简单培训,不需要有编程能力,人人都可以参与脚本的编写; AI自动化,就是通过操作app的规则生成文件,然后通过辅助apk把文件上传到服务器,进行热点分析,然后把数据推到自动化框架进行测试(弱弱地说,已实现,效果还不错,投入成本不高) 图像识别解决难定位元素以及webview,WindowManager 做的图标或者页面定位操作;

    02

    没有高速摄像机,我是这样测试app页面加载时间

    对于安卓app专项性能测试中的页面加载/启动时间测试,对于测试方法的选择主要考虑技术,成本和测试项;对于启动时间/页面加载时间目前主要测试方法有五种,第一种是通过Android Device Monitor  通过筛选包名和Displayed关键字,来看启动时间;第二种是通过获取APP的启动activity,然后通过adb shell am start -W 包名/xxxActivity启动页面,然后输出的的时间有This time,Totaltime和Waittime三个时间;第三种是通过高速摄像机和QuickTime Player 来测试;第四种是通过自动化和图像识别来统计时间;第五种是让开发在代码插桩来进行统计;其中第五种是依赖开发或者依赖代码,并且存在无法判断元素是否加载完成,存在误差,综合以上,根据能力的区别和成本投入,前面四种测试方法都有人选择,而对于第三种应该是最准确,也是对于高要求的公司在使用,基本高速摄像头,一般1s都有240张图,可以测试的很精准,可以真正的测试到用户感知的页面加载完成的时间;对于成本投入小,精度要求不是特别高的,我建议是使用自动化和图像识别,这个是最好的;

    01

    Airtest Project:一款免费的自动化测试工具

    Airtest Project是网易出品的一款自动化解决方案,它适用于任意游戏引擎和应用的自动化测试,并且支持Android和Windows。 Airtest 是一个自动化测试框架提供了利用图像识别技术,Airtest Project不需要依赖被测对象的源码。 Airtest Project是跨平台的API,它基本和所有Android移动应用程序和Windows游戏兼容。 在2018年3月26号的Google开发者日上,Google也宣布了这款由网易开发的项目,因此很值得一试。 Airtest Project提供了一个自动化测试编辑器Airtest IDE,Airtest IDE使用了基于图像识别的UI自动化测试框架—Airtest来进行控件定位;它同时集成了POCO框架,POCO框架是基于控件识别的UI自动化框架,支持主流游戏引擎:Cocos2d-x, Unity3d,支持Android原生应用。因此可以选择是用图像识别或者基于控件定位的方式来进行控件定位。

    05

    AI技术在公众气象服务中的尝试应用

    AI技术的火爆无疑是近几年创新应用上的一次革命。如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。利用AI技术进行雷达图像的识别,进行短临预报;利用AI技术与数值模式结合提升预报的准确率;利用AI技术进行探测数据的质量控制和融合处理;利用AI技术进行天气预警的精准推送;利用AI技术进行大雾的识别、天气现象的识别等等,可以说AI已经在气象领域中全面开花。在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。

    03

    AI技术在公众气象服务中的尝试应用

    AI技术的火爆无疑是近几年创新应用上的一次革命。如今AI技术在众多科技公司的推动下已经渗透到各行各业,气象行业也不例外。将AI融入到天气预报、大气探测、天气预警以及天气服务中的尝试一直未间断。AI技术的应用背后是大数据的支撑和机器学习的广泛探索。利用AI技术进行雷达图像的识别,进行短临预报;利用AI技术与数值模式结合提升预报的准确率;利用AI技术进行探测数据的质量控制和融合处理;利用AI技术进行天气预警的精准推送;利用AI技术进行大雾的识别、天气现象的识别等等,可以说AI已经在气象领域中全面开花。在复杂的大气物理、化学等机理研究难以取得突破时,融入AI技术是提升气象技术的有利补充。关于天气预报、探测等AI技术的应用上经验比较少,跟大家分享一下我参与实施的在公众气象服务中的一些尝试应用。

    03
    领券