统计分析就是去理解一个数据集中变量之间的关系,以及这些关系如何受到其他变量的影响。Seaborn 的主要用处就是可视化这个过程。当数据以恰当的方式展示出来时,读者可以直观地观察到某些趋势并发现变量之间的关系。
本节开始一个全新的系列,是整套 Python 第三阶段的课。我把整套知识体系分成四个模块:
本篇以真实的交易证实 (term sheet) 为例,揉碎了讲解如何用 PDE FD 来定价雪球 Autocallable 产品。
Seaborn 是基于 matplotlib 开发而用于统计可视化的高阶工具包。它可无缝相接的在 Pandas 的 DataFrame 上直接画图,而且代码量不多,函数签名也很一致。Seaborn 可视化的内容很多,我将其分为三个部分来讲解。
在搜索商业智能(BI)工具时,可能每个BI供应商都将其产品称为唯一的“最佳”解决方案进行宣传,晕乎转向。笔者身边有很多在数据中心工作的朋友,也有各种IT信息部的大佬,也见惯了各家上门兜售产品的厂商。
营销的基本原理是一致的,每个人都喜欢洞察力,因为这些数字模式可以提供最安全的方法来确保企业采取正确的行动,更有效地运作,以及将其资源用在何处。数据已经成了战略的据点。
我们在上一篇的时候已经将淘宝数据爬取下来了,但是并没有做数据分析。所以今天这篇文章就是教大家如何去分析数据,得出一些有用的结论!
将数据存储在数据库中对于当今的企业来说是一件很自然的事情。客户信息、历史订单、产品定价、物联网传感器数据,以及更多的正在被记录下来的信息,以备将来使用。然而,仅仅存储数据还不足以形成竞争市场优势。我们还必须能够分析数据,分析数据有很多方法可以选择。如果您想在MongoDB中进行可视化分析的数据,MongoDB图表是一个非常好的选择。
数据分析之前我们需要清楚的知道自己想要分析什么东西,也就是先搞清楚我们的目标。在公司可能是公司财报、用户增量变化、产品受欢迎程度、一些报表等等。
汽车共享”最早出现于上个世纪四十年代的瑞士,他们发明了“自驾车合作社”,后来日本、英国等国争相效仿,但都未形成规模。而今,共享经济通过互联网达到了一个新的高度,共享汽车项目则乘势如雨后春笋般涌现在全国多个城市,一些人看好,而一些人看衰
精益生产是一种以尽量减少浪费为目标的生产方式,其核心在于高效利用资源、优化流程、提高质量。以下是8个步骤告诉你如何做好精益生产:
将数据存储在数据库中是当今企业的基础。客户信息,订单历史记录,产品定价,物联网传感器数据等,都以备将来使用。但是,仅存储数据不足以形成市场竞争优势,我们也必须能够分析数据。分析数据有很多选择,可以通过各种方式实现。如果您有需要在MongoDB中进行可视化分析的数据,MongoDB图表是一个很棒的选项。
编者注: 随着行业对营销和推广效果的重视,数据的作用越来越大。而营销渠道的多样化,也导致数据来源的数量和数据本身的体量都越来越大。如何挖掘,分析和展现各种数据就成为所有公司的一个关注点。众多商业智能解
这是 Python 进阶课的第十五节 - 量化交易之向量化回测 ,进阶课的目录如下:
本文主要阐述了图表设计的重要性,介绍了图表设计的基本原则、视觉元素和层次、图表类型和选择方法、图表设计方法、设计误区以及图表的交互方式。作者通过深入分析图表设计中的各种细节,使读者能够更好地理解和应用图表设计,从而提高数据可视化的效果。
本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等。 1初级入门 《R语言实战》,这是高涛、肖楠等翻译的一本书详细全面介绍了入门、图形、统计、回归、方差、功效分析、广义线性模型、主成分、因子分析、缺失值处理等。除此之外,还可以去读刘思喆的《153分钟学会R》。这本书收集了R初学者提问频率最高的153个问题。为什么叫153分钟呢?因为最初作者写了153个问题,阅读一个问题花费1分钟时间,全局下来也就是153分钟了 2高级入门 读了上述书籍之后,你就可以去高级入门阶段了
本文是「信用风险建模 in Python」系列的第一篇,其实在之前的 Cufflinks 那篇已经埋下了信用风险的伏笔,
ChatGPT是一款功能非常强大的AI(人工智能)聊天机器人,能做很多的事情。比如它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码等任务。 但ChatGPT也并非十全十美,比如:它就做不了一份完整的数据分析可视化报告。 但是,你有表姐呀,我们《Excel数据分析可视化实战》全新图书,来咯~ 《Excel数据分析可视化实战》就是针对数据可视化的专项介绍,让你轻轻松松就可以做出炫酷、强大的数据分析大屏! 本书遵循
充分了解限价订单薄(LOB)的运行动态是获得交易优势的一种可行的方式。LOB是未完成订单的记录,是大多数现代交易所的核心。在这样一个熙熙攘攘的市场,买家和卖家不断调整他们的出价和报价,以应对市场的涨落。
金融科技&大数据产品推荐:兴业研究地方政府信用评级产品
这篇文章是瓜子内部Tech Talk的笔记,主要介绍如何构建基于知识图谱的用户画像,感谢家帅分享。
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来。当然,这不是最好的学习方式,最好的方式是——看书。目前,市面上介绍R语言的书籍很多,中文英文都有。那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问。有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路。 本文分为6个部分,分别介绍初级入门,高级入门,绘图与可
本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化,计量经济学,时间序列分析,金融等。
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到QQ群、论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来。当然,这不是最好的学习方式,最好的方式是——看书。目前,市面上介绍R语言的书籍很多,中文英文都有。那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问。有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路。 本文分为6个部分,分别介绍初级入门,高级入门
在中国的打车市场混战中,Uber也加入了战局。与国内打车公司策略不同,动态定价策略是其核心之一,不论是受到赞扬还是诟病,这个符合经济供求的溢价算法在中国已经启动。 当你在某个夜晚听完演唱会想叫个Uber回家时,你可能会发现价格居然自动上涨了1.5倍甚至更高,这是怎么算出来的。 溢价算法,是基于他们对市场这只无形的手的调节功能,百分之百的相信,以及百分之两百的理解,正如他们自己所说“溢价不是计划好的,是依据供求动态平衡”。 下文摘自Uber的董事会成员Bill Gurley的文章,他深入的探讨一下该定价策略和
在消费升级的助推下,电子零售渠道变得成熟稳定,而且还在不断增强,多渠道竞争不断变化,和传统线下渠道对比线上电商运营手段多样和方便,电商会经常采用价格策略以吸引消费者,这种灵活而频繁的价格变动对供货商的渠道管理提出了前所未有的挑战,实时监测电商的价格变动对于供货商的渠道管理和品牌建设成为重要的环节。同时电商促销活动设计和日常运营,价格是贯穿整个运营环节的关键,对于品牌方或者渠道运营方,怎么有效了解行业和竞品实时状态和历史行为,设计有效的价格体系也是日常重要工作。
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来。当然,这不是最好的学习方式,最好的方式是——看书。目前,市面上介绍R语言的书籍很多,中文英文都有。那么,众多书籍中,一个生手应该从哪一本着手呢?入门之后如何才能把自己练就成某个方面的高手呢?相信这是很多人心中的疑问。有这种疑问的人有福了,因为笔者将根据自己的经历总结一下R语言书籍的学习路线图以使Ruser少走些弯路。 本文分为6个部分,分别介绍初级入门,高级入门,绘图与可视化
主讲嘉宾:吴甘沙 主持人:中关村大数据产业联盟 副秘书长 陈新河 承 办:中关村大数据产业联盟 嘉宾介绍: 吴甘沙:现任英特尔中国研究院院长。在此以前,吴甘沙作为首席工程师主持大数据方面的研究,工作重点为大数据内存分析与数据货币化。 吴甘沙于2000年加入英特尔,先后在编程系统实验室与嵌入式软件实验室承担了技术与管理职位,期间参与或主持的研究项目有受控运行时、XScale微架构、众核架构、数据并行编程及高生产率嵌入设备驱动程序开发工具等。吴甘沙于2011年晋升为首席工程师,同年,他共同领导了公司的大数据中长
Gartner的定义:安全信息和事件管理( Security Information Event Management)技术通过对来自各种事件和上下文数据源的安全事件的实时收集和历史分析来支持威胁检测和安全事件响应。它还通过分析来自这些来源的历史数据来支持合规报告和事件调查。SIEM技术的核心功能是广泛的事件收集,以及跨不同来源关联和分析事件的能力。
下图是CA1321一年的机票价格变化。每一行代表特定出发日期的价格变化,例如第一行代表2016年8月15日起飞的航班的机票价格的变化。一行里,左边离出发日期越近,右边离出发日期越远。第一个方块代表距离出发日期0天(当天)的机票价格,第二格代表距离出发日期1天的机票价格,以此类推,最后一个表示44天前的价格。颜色越深代表价格越高,颜色越浅价格。
对于旅游或者探亲来说,买机票的一个最基本的问题是什么时候买能买到最便宜的机票?提前一个月还是一周?知乎上各种旅游攻略上各种“业内人士”也说提前一个月买可能买到最便宜的机票,有些又说提前2个星期买能买到最便宜的机票,事实真的如此么?为了解密机票的定价策略,本文作者做了一个长达一年多的数据收集,通过分析350亿机票价格数据,告诉你机票的各种秘密。
之前经常有童鞋在后台/群里问量化如何入门这个问题,这种问题一般都是没有人回答的,因为这是一个到处都可以找得到答案的问题,所以也推荐大家
译者:吴昊、审校:骆姿亦 本文长度为2079字,预估阅读时间4分钟。 我们今天要向大家介绍的是谷歌发布的一款可视化工具GoogleData Studio 360。 前言 如果你已经读过我们的前一篇博客《你是否需要Google Analytics 360?》,那么你已经了解到谷歌发布了这套针对营销和广告从业者的实用产品。我们这次将会介绍这套产品中的一款工具:GoogleData Studio 360。 Data Studio 360是一款可视化和分析工具。它可以与Google Analytics、Googl
有个人可能会问 NumPy-Pandas-SciPy 不都是免费资源吗,为什么还要花钱来上课?没错,我也是参考了大量书籍、优质博客和付费课程中汲取众多精华,才打磨出来的前七节课。
对于旅游或者探亲来说,买机票的一个最基本的问题是什么时候能买到最便宜的机票?提前一个月还是一周?网络上各种旅游“业内人士”也说提前一个月可能买到最便宜的机票,有些又说提前2个星期能买到最便宜的机票,事实真的如此么?为了解密机票的定价策略,本文数据侠做了一个长达一年多的数据收集,通过分析350亿机票价格数据,告诉你机票的各种秘密。
【大数据文摘-原点栏目】 “原点”坐标中的定位点、起点,万事开头难,但只要起步,一切皆有可能。2015年初, 大数据文摘“原点”栏目成立。这是针对大数据初创公司的采访栏目。通过在线采访的方式,对与大数据相关的初创团队进行采访,介绍项目、技术、商业模式。初期,我们的采访对象是美国等发达国家的大数据相关的初创企业,他们一般已经获得天使或A轮投资。 我们希望通过“原点”,为读者打开一扇门,看到国外“大数据”初创公司是如何启动、运营的,看到这些创业公司后面的人、团队有着怎样一种情怀。同时我们也会真诚帮助那
上节主要从插值、数值积分和优化三大功能介绍 scipy,下节从有限差分和线性回归两大功能来介绍 scipy。
美国银行已经部署了Salesforce Einstein功能,包括Predictive Lead Scoring和Einstein Analytics(之前的Wave),用于客户流失分析和保留。此外它还采用了Einstein Discovery(之前的BeyondCore),以更好地了解客户行为和交叉销售机会。该银行预计将把Einstein推广给全公司2000名面向客户的财务顾问,希望能够“大规模提供个性化服务”以及“创造具有差异化的客户体验”,Hoffman表示。
点击标题下「大数据文摘」可快捷关注 吴甘沙:英特尔中国研究院院长 围墙里的大数据注定成为死数据。大数据需要开放式创新,从数据的开放、共享和交易,到价值提取能力的开放,再到基础处理和分析平台的开放,让数据如同血液在数据社会的躯体中长流,滋润数据经济,让更多的长尾企业和数据思维创新者产生多姿多彩的化学作用,才能创造大数据的黄金时代。 我的大数据研究轨迹 我做了4-5年的移动架构和Java虚拟机,4-5年的众核架构和并行编程系统,最近4-5年也在追时髦,先是投入物联网,最近几年一直在做大数据。我们团队的大数据研究
摘要:本篇文章是"Python股市数据分析"两部曲中的第一部分,主要介绍金融数据分析的背景以及移动均线等方面的内容。 本篇文章是"Python股市数据分析"两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:
Destiny,某物流公司数据产品经理,目前从事数据平台搭建和可视化相关的工作。持续学习中,期望与大家多多交流数据相关的技术和实际应用,共同成长。
本篇文章是”Python股市数据分析”两部曲中的第一部分,内容基于我在犹他州立大学MATH 3900 (Data Mining)课程上的一次讲座。在这些文章中,我将介绍一些关于金融数据分析的基础知识,例如,使用pandas获取雅虎财经上的数据,股票数据可视化,移动均线,开发一种均线交叉策略,回溯检验以及基准测试。第二篇文章会介绍一些实践中可能出现的问题,而本篇文章着重讨论移动平均线。 注意:本篇文章所涉及的看法、意见等一般性信息仅为作者个人观点。本文的任何内容都不应被视为金融投资方面的建议。此外,在此提供的
设计用于保险索赔的预测或数据建模工具,立即分析Wolfram|Alpha 和电子表格中的数据,并呈现完全交互式的图表和报告——完整的工作流程。
John Lucker是德勤咨询公司顾问,他20多年来都没有申请过一张新的信用卡。但是在过去的三年里,他却收到了超过300份来自银行,连锁酒店,各种无奇不有的团体的邀请。这是一个或被称为广撒网式营销的战术,他认为这也是“非常古老的战术 ”。 如果公司对他广撒网时候分析了他过去和现在的行为,比如他多长时间申请一次信用卡或者他与他们的各项业务有怎样的交集,那他们应该能够预料到他的反应然后把他们的祈祷留给下一个更可能的客户。 Lucker的个人经历使他确信,像这样的基本做法还需完善。 首席信息官们,
今天为大家带来的优秀作品赏析,是来自交大的“葫芦娃大战变形金刚”队的“小康的吃路历程”。金刚队成员:康世勇、沈家齐、黄鈃灵、焦天翼、吴嘉韵。 饮食特征: 横坐标:日校园卡消费额,纵坐标:人数。 蓝色曲线代表男生,黄色曲线代表男生每日消费均值集中在17~18元,而女生则在14元左右。 左边河流图: 横坐标:时间(早上5点半开始),纵坐标:人流量(由该时刻刷卡数量得到)由深至浅六种颜色分别代表一餐到六餐各个餐厅的人流。 三个最显著的高峰,风别出现在早上7点半,中午11点半和下午5点半,这是相当
Holo-Light开发MR应用,或可替代3D打印 近日,来自德国的Holo-Light正在打造MR系列应用,包括《Holo-View》、《Holo-Expo》和《Holo-Stylus》。《Holo
领取专属 10元无门槛券
手把手带您无忧上云