首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在片段图之外显示值

是指在计算机图形学中,片段图是渲染管线中的一个阶段,它包含了每个像素的颜色、深度和其他属性。而在片段图之外显示值是指在渲染管线的后续阶段,将片段图中的像素值显示在屏幕上或其他输出设备上。

在实际应用中,可以通过将片段图中的像素值传递给帧缓冲区来实现在屏幕上显示。帧缓冲区是一个存储像素值的内存区域,它可以被映射到屏幕上的像素点。通过将片段图中的像素值写入帧缓冲区,可以实现将图形渲染结果显示在屏幕上。

在云计算领域,片段图之外显示值的概念可以应用于图形渲染服务。云计算提供了强大的计算和存储资源,可以用于进行大规模的图形渲染任务。通过将渲染管线中的片段图结果传递给帧缓冲区,并将帧缓冲区中的像素值存储在云存储中,可以实现在云端生成图形渲染结果,并将结果传输到客户端进行显示。

腾讯云提供了一系列与图形渲染相关的产品和服务,例如云服务器、云存储、云网络等。可以使用腾讯云的云服务器实例进行图形渲染任务的计算,将渲染结果存储在云存储中,并通过云网络将结果传输到客户端进行显示。

参考链接:

  • 腾讯云云服务器:https://cloud.tencent.com/product/cvm
  • 腾讯云云存储:https://cloud.tencent.com/product/cos
  • 腾讯云云网络:https://cloud.tencent.com/product/vpc
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • Nature:分析2658例癌症样本的全基因组中非编码体细胞的driver

    以往的大规模测序项目已经确定了许多公认的癌症基因,但大部分工作都集中在蛋白质编码基因的突变和拷贝数改变上,主要使用全外显子组测序和单核苷酸多态性阵列数据。全基因组测序使系统地调查非编码区域的潜在driver事件成为可能,包括单核苷酸变异(SNVs),小的插入和缺失(indels)和更大的结构变异。全基因组测序能够精确定位结构变异断点(breakpoints)和不同基因组位点之间的连接( juxtapositions并置)。虽然以前的小规模样本的全基因组测序分析已经揭示了候选的非编码调控driver事件,但这些事件的频率和功能含义仍然缺乏研究。

    02

    【连载】癌症中的嵌合RNA (Chimeric RNA) (一)

    嵌合RNA是包含两个独立基因的外显子杂交的转录物。传统观点认为嵌合RNA是由染色体重排引起的基因融合而来。这些典型的嵌合RNA被描述为具有癌症特异性表达模式和/或作为癌基因产物。然而,得益于深度测序技术的发展,一类新的非典型嵌合RNA被发现可以通过相邻基因之间的反式剪接或顺式剪接(cis-SAGe)机制形成,而没有基因组的异常。尽管一部分非典型嵌合RNA已被证明具有癌症特异性表达模式,在正常生理机能中也能广泛检测到。进一步的研究表明,它们中的一些可能具有独立于亲代基因控制细胞生长和细胞运动的作用。这些发现揭示了一个新的功能转录组,也提高了非典型嵌合RNA作为癌症诊断标记和治疗靶点的可能性。

    03

    双特异性抗体在急性髓细胞白血病治疗中的应用

    双特异性抗体由两种或多种抗体的抗原识别片段组成,使其可以同时与靶向细胞以及免疫效应细胞结合。早在20世纪80年代,科学家们就对免疫效应细胞靶向特定癌症相关抗原的能力以及其在癌症治疗方面的应用前景表现出了浓厚兴趣。近来迅猛发展的医疗技术使得重组蛋白类生物制品的工程设计,开发和生产变得更加容易,再加上制药行业的需求,极大地推动了双特异性抗体的研究。今天,已经有超过50种不同类型的双特异性抗体正在进行临床试验。众多双特异性抗体技术平台正在接受检验,其中包括单链可变片段(single-chain variable fragment, scFv),串联双抗体(tandem diabodies, TandAb),双特异性T细胞桥接抗体(bispecific T-cell engagers, BiTE),双亲和力重新定向抗体(dual affinity retargeting antibodies, DART)和双特异性杀伤细胞桥接抗体(Bispecific killer cell engagers, BiKEs) (图1)。在癌症治疗中,目前正在开发的双特异性抗体要么能够募集并重定向免疫效应细胞来杀伤肿瘤细胞或通过阻断肿瘤表面配体与受体的结合来抑制不同的肿瘤相关信号通路。目前最常用的策略是,在双特异性抗体上设计一个片段与肿瘤细胞上的抗原结合,而另一个片段能够与免疫效应细胞结合(经常是通过结合CD3分子来连接T细胞)。这就使得双特异性抗体能够重定向免疫效应细胞到肿瘤细胞周围并且不依赖于主要组织相容性复合体(MHC),从而可以避免因为肿瘤细胞下调MHC而导致的免疫逃逸(图2)。取决于双特异性抗体重定向的效应免疫细胞的类型,靶细胞,也就是肿瘤细胞,通常被颗粒酶B/穿孔素介导的或者是抗体依赖性细胞介导的细胞毒性作用(antibody-dependent cell-mediated cytotoxicity, ADCC)杀死。

    02

    健康老年人的EEG静息态脑网络

    最近的研究强调了与健康老化有关的大规模大脑网络的变化,其最终目的是帮助区分正常的神经认知老化和同样随着年龄增长而产生的神经退行性疾病。功能性磁共振成像(fMRI)的新证据表明,特定大脑网络的连接模式,特别是默认模式网络(DMN),将阿尔茨海默病患者与健康人区分开来。此外,支持高水平认知的大规模大脑系统的破坏性改变被证明伴随着行为层面的认知下降,这在老龄人口中是普遍观察到的,即使他们没有疾病。虽然fMRI对于评估大脑网络的功能变化很有用,但它的高成本和有限的可及性使那些需要大量人口的研究望而却步。在这项研究中,作者使用高密度脑电图和电生理源成像研究了人类大脑大规模网络的老化效应,这是一种成本较低且更容易获得的fMRI替代方法。特别的,这项研究考察了一组健康受试者,其年龄范围从中年到老年,这在文献中是一个研究不足的范围。采用高分辨率的计算模型,这项研究结果揭示了DMN连接模式中的年龄关联,与之前的fMRI发现一致。特别是结合标准的认知测试,这项研究的数据显示,在DMN的后扣带/楔前区,较高的大脑连接与较低的偶发记忆任务表现有关。这些发现证明了使用电生理成像来描述大规模大脑网络的可行性,并表明网络连接的变化与正常老化有关。

    02

    美女教授带你从统计学视角看转录组分析

    分子生物学的中心法则自1958年由Francis Crick提出到今年正好60周年,它描述了“DNA制造RNA,RNA制造蛋白质”的遗传信息的标准流程 [1]。十年前,第二代RNA测序技术(RNA-seq)的诞生及其迅速发展使得研究者可以在对RNA序列没有任何先验信息的情况下高通量地对全转录组进行测序 [2]。现如今第二代RNA测序技术已经成为了研究基因和RNA表达最常用的手段之一,它的广泛应用极大地促进了生物和医学领域的各类研究,包括对基因表达与调控,RNA可变剪切以及蛋白质翻译等多项生物过程的了解 [3]。具体见生信老司机以中心法则为主线讲解组学技术的应用和生信分析心得。

    03

    TME文献精读 | 基于机器学习的体细胞突变检测方法

    体细胞突变检测准确性可能会影响癌症患者的突变发现和治疗管理。为了解决这个问题,作者在机器学习的基础上开发了一种体细胞突变发现方法,该方法在识别经过验证的肿瘤改变方面优于现有方法(敏感性97% vs 90%~99%;阳性预测值98% vs 34%~92%)。使用此方法对来自1368 TCGA样本的成对肿瘤正常外显子组数据进行分析,该算法与TCGA MC3突变集的一致性为74%,并且还发现TCGA MC3集中可能存在假阳性和假阴性突变,包括在临床上可靶向的基因。对于先前用免疫检查点抑制剂治疗过的黑色素瘤和肺癌患者,该机器学习算法的高质量体细胞突变评估可改善基于肿瘤突变负荷的临床结果预测。与其他临床测序分析相比,将机器学习突变检测应用于临床二代测序(NGS)分析中可以提高检测结果的准确性。以上分析基于机器学习的分析可改进对肿瘤特异性突变的鉴定,并对癌症患者的研究和临床管理具有重要意义。

    02
    领券