要在Android中使用TensorFlow Lite (TFLite) 分类器,你需要遵循以下步骤:
build.gradle
文件中添加TensorFlow Lite的依赖项。dependencies {
implementation 'org.tensorflow:tensorflow-lite:2.7.0' // 请检查最新版本
}
.tflite
文件放入assets
文件夹中。Interpreter
对象来加载和运行模型。下面是一个简单的例子,展示了如何在Android应用中使用TensorFlow Lite进行图像分类:
import android.content.Context
import org.tensorflow.lite.Interpreter
import java.nio.ByteBuffer
import java.nio.ByteOrder
import java.nio.file.Files
import java.nio.file.Paths
class Classifier(context: Context) {
private val interpreter: Interpreter
private val inputSize = 224 // 假设模型需要的输入大小是224x224
private val batchSize = 1 // 批处理大小
private val inputBuffer: ByteBuffer
init {
val assetFileDescriptor = context.assets.openFd("your_model.tflite")
val fileInputStream = assetFileDescriptor.createInputStream()
val fileChannel = fileInputStream.channel
val startOffset = assetFileDescriptor.startOffset
val declaredLength = assetFileDescriptor.declaredLength
val buffer = ByteArray(declaredLength.toInt())
fileChannel.read(ByteBuffer.wrap(buffer), startOffset)
fileChannel.close()
fileInputStream.close()
interpreter = Interpreter(buffer)
inputBuffer = ByteBuffer.allocateDirect(batchSize * inputSize * inputSize * 3 * 4)
inputBuffer.order(ByteOrder.nativeOrder())
}
fun classify(image: Bitmap): String {
// 将Bitmap转换为适合模型的ByteBuffer
val pixels = IntArray(image.width * image.height)
image.getPixels(pixels, 0, image.width, 0, 0, image.width, image.height)
val byteBuffer = ByteBuffer.allocateDirect(pixels.size * 4)
byteBuffer.order(ByteOrder.nativeOrder())
for (pixel in pixels) {
val r = (pixel shr 16 and 0xff)
val g = (pixel shr 8 and 0xff)
val b = (pixel and 0xff)
byteBuffer.putInt((r shl 16) or (g shl 8) or b)
}
byteBuffer.position(0)
inputBuffer.clear()
inputBuffer.put(byteBuffer)
// 运行模型
val outputBuffer = Array(1) { FloatArray(1000) } // 假设模型有1000个类别
interpreter.run(inputBuffer, outputBuffer)
// 获取最可能的类别
val result = outputBuffer[0]
val bestLabelIdx = result.indexOf(result.max()!!)
return "Class: $bestLabelIdx"
}
}
领取专属 10元无门槛券
手把手带您无忧上云