,可以通过以下步骤完成:
<dependency>
<groupId>io.confluent</groupId>
<artifactId>kafka-avro-serializer</artifactId>
<version>5.4.1</version>
</dependency>
import io.confluent.kafka.serializers.KafkaAvroDeserializationSchema;
import io.confluent.kafka.serializers.KafkaAvroSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
// 创建一个Avro的数据模型
public class MyAvroRecord {
private String field1;
private int field2;
// getters and setters
}
// 使用KafkaAvroDeserializationSchema进行反序列化
KafkaAvroDeserializationSchema<MyAvroRecord> deserializationSchema = new KafkaAvroDeserializationSchema<>(MyAvroRecord.class);
// 使用KafkaAvroSerializationSchema进行序列化
KafkaAvroSerializationSchema<MyAvroRecord> serializationSchema = new KafkaAvroSerializationSchema<>(topic, schemaRegistryUrl);
// 创建Flink Kafka Consumer和Producer
FlinkKafkaConsumer<MyAvroRecord> kafkaConsumer = new FlinkKafkaConsumer<>(topic, deserializationSchema, properties);
FlinkKafkaProducer<MyAvroRecord> kafkaProducer = new FlinkKafkaProducer<>(topic, serializationSchema, properties);
properties.setProperty("bootstrap.servers", "kafka-broker1:9092,kafka-broker2:9092");
properties.setProperty("group.id", "flink-consumer-group");
properties.setProperty("schema.registry.url", "http://schema-registry:8081");
DataStream<MyAvroRecord> stream = env.addSource(kafkaConsumer);
stream.map(record -> {
// 对消息进行处理
return record;
}).addSink(kafkaProducer);
这样,你就可以在Flink 1.9.1下使用confluent注册表序列化Kafka消息了。
推荐的腾讯云相关产品:腾讯云消息队列 CMQ、腾讯云流计算 TDSQLC、腾讯云数据流水线 DataWorks。
腾讯云产品介绍链接地址:
领取专属 10元无门槛券
手把手带您无忧上云