在R中使用glm和cv.glmnet预测新数据(包括交互和分类变量)
在R中,glm和cv.glmnet是两个常用的函数,用于建立和预测线性回归模型和弹性网络模型。它们可以用于预测新数据,包括交互和分类变量。
综上所述,使用glm和cv.glmnet函数可以在R中预测新数据,包括交互和分类变量。glm函数适用于拟合广义线性模型,而cv.glmnet函数适用于拟合弹性网络模型。这两个函数在统计建模和机器学习领域具有广泛的应用场景,并且可以通过腾讯云机器学习平台进行相关的模型训练和预测。
领取专属 10元无门槛券
手把手带您无忧上云