首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

基于键集和谓词获取Map的Hazelcast查询

是指使用Hazelcast分布式内存数据网格(In-Memory Data Grid)提供的功能,通过指定键集和谓词(Predicate)来查询分布式Map中的数据。

Hazelcast是一个开源的分布式计算平台,提供了分布式数据结构和分布式计算能力。它的分布式Map是一个键值对存储结构,类似于Java中的HashMap。通过Hazelcast的分布式Map,可以将数据存储在集群中的多个节点上,实现数据的高可用性和横向扩展。

基于键集和谓词获取Map的Hazelcast查询的步骤如下:

  1. 创建Hazelcast实例:首先需要创建一个Hazelcast实例,可以通过Hazelcast的API来创建。
  2. 获取分布式Map:通过Hazelcast实例,可以获取到已经存在的分布式Map,或者创建一个新的分布式Map。
  3. 构建谓词:根据查询的需求,构建一个谓词对象。谓词可以是一个Lambda表达式、一个匿名类或者一个实现了Predicate接口的自定义类。谓词用于过滤Map中的数据,只返回符合条件的数据。
  4. 执行查询:使用分布式Map的keySet(Predicate)方法,传入谓词对象作为参数,执行查询操作。该方法会返回符合谓词条件的键集合。
  5. 处理查询结果:根据返回的键集合,可以进一步操作Map中的数据,比如获取对应的值、更新数据等。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 2019-11-26 Hazelcast Map配置文档

    map: default: in-memory-format: BINARY metadata-policy: CREATE_ON_UPDATE statistics-enabled: true optimize-queries: true cache-deserialized-values: ALWAYS backup-count: 1 async-backup-count: 0 time-to-live-seconds: 0 max-idle-seconds: 0 eviction-policy: NONE max-size: policy: PER_NODE max-size: 0 eviction-percentage: 25 min-eviction-check-millis: 100 merge-policy: batch-size: 100 class-name: PutIfAbsentMergePolicy read-backup-data: false hot-restart: enabled: false fsync: false map-store: enabled: true initial-mode: LAZY class-name: com.hazelcast.examples.DummyStore write-delay-seconds: 60 write-batch-size: 1000 write-coalescing: true properties: jdbc_url: my.jdbc.com near-cache: max-size: 5000 time-to-live-seconds: 0 max-idle-seconds: 60 eviction-policy: LRU invalidate-on-change: true in-memory-format: BINARY cache-local-entries: false eviction: size: 1000 max-size-policy: ENTRY_COUNT eviction-policy: LFU wan-replication-ref: my-wan-cluster-batch: merge-policy: com.hazelcast.map.merge.PassThroughMergePolicy filters: - com.example.SampleFilter - com.example.SampleFilter2 republishing-enabled: false indexes: name: ordered: false age: ordered: true attributes: currency: extractor: com.bank.CurrencyExtractor entry-listeners: - class-name: com.your-package.MyEntryListener include-value: false local: false partition-lost-listeners: - com.your-package.YourPartitionLostListener quorum-ref: quorumRuleWithThreeNodes

    03

    《数据库索引设计优化》读书笔记(六)

    第10章 多索引访问 练习 10.1 假设多索引访问一节中所描述的拥有位图索引的CIA表包含200000000行数据。请评估(a)位图索引和(b)半宽B树索引所需的磁盘空间。 假设一个字节占8位。请将磁盘空间的差异转化为每月需要支付的美元金额。 书中关于拥有位图索引的CIA表的描述如下:    位图索引的比较优势在于能够很容易地使用多个位图索引来满足单个查询。考虑一个有多个谓词条件的查询,每个谓词上都有一个索引。虽然有些系统可能尝试对多个索引的记录标识进行交集操作,但是传统的数据库可能会只使用其中一个索引。位图索引在此种情况下工作得更好,因为它们更紧凑,而且计算几个位图的交集比计算几个记录集合的交集更快。在最好的情况下,性能的提升与机器的字长成比例,因为同一时间两个位图能够进行一个字长的位的交集计算。最佳的使用场景是,每一个单独谓词的选择性不好,但是所有谓词一起进行索引与后的选择性很好。位图索引考虑如下查询,“找出有棕色头发,戴眼镜,年龄在30岁至40岁之间,蓝眼睛,从事计算机行业并居住在加利福利亚的人”。这意味着对棕色头发位图、佩戴眼镜的位图、年龄在30岁至40岁间的位图等进行交集计算。    在当前的磁盘条件下,只要查询中没有太多的范围谓词,使用一个半宽B树索引是性能最佳的方案,即便对于像CIA那样的应用来说也是如此。对于上文中的例子,一个用HAIRCOLOUR、 GLASSES、EYECOLOUR、INDUSTRY和STATE的任意排序序列作为开头,并以DATE OF BIRTH作为第6列的索引将提供非常出色的性能,因为这使得访问路径将会有6个匹配列:包含目标结果集的索引片将会非常窄。 分析: 位图索引的空间主要跟表的记录数和索引列的键值数有关,题目中只给了表的记录数,所以需要根据实际情况可以确定6个位图索引的键值数如下: 头发颜色 键值数为5 是否戴眼镜 键值数为2 年龄段 键值数为10 眼睛颜色 键值数为10 行业 键值数为100 州 键值数为50 (a)6个位图索引需要的磁盘空间为 (5+2+10+10+100+50) * 200000000 /8/1024/1024/1024 = 4.12G B树索引的空间跟索引字段的长度有关,假设半宽索引的6个字段的总长为50字节 (b)半宽B树索引所需的磁盘空间为 1.5 * 50 * 200000000 /1024/1024/1024 = 13.97G

    02
    领券