首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何用spss做一般(含虚拟变量)多元线性回归

    回归一直是个很重要的主题。因为在数据分析的领域里边,模型重要的也是主要的作用包括两个方面,一是发现,一是预测。而很多时候我们就要通过回归来进行预测。关于回归的知识点也许不一定比参数检验,非参数检验多,但是复杂度却绝对在其上。回归主要包括线性回归,非线性回归以及分类回归。本文主要讨论多元线性回归(包括一般多元回归,含有虚拟变量的多元回归,以及一点广义差分的知识)。请大家不要觉得本人偷奸耍滑,居然只有一个主题,两个半知识点。相信我,内容会很充实的。 对于线性回归的定义主要是这样的:线性回归,是基于最小

    028

    回归分析中自变量取舍、检验及多重共线性处理(VIF)「建议收藏」

    A1 正交假定:误差项矩阵与X中每一个x向量都不相关 高斯-马尔科夫定理:若满足A1和A2假定,则采用最小二乘法得到回归参数估计是最佳线性无偏估计 方程估计值b1和b2可以看做偏回归系数,也是相应自变量对y的一种偏效应 偏效应:在控制变量下,各自变量X对因变量Y的净效应 残差项:针对具体模型而言,被定义为样本回归模型中观测值与预测值之差 误差项:针对总体真实回归模型而言,它由一些不可观测因素或测量误差所引起 纳入无关自变量并不影响OLS估计结果的无偏性,但是如果无关自变量如果与其他自变量相关,会导致相应回归系数(b1,b2)的标准误增大;换句话说,如果总体中无关自变量对y没有偏效应,那么把它加入模型只可能增加多重共线性问题,从而减弱估计的有效性。 因此,不要加入无关自变量,原因是

    03
    领券