最近在从头重写 MobileIMSDK 的TCP版,自已组织TCP数据帧时就遇到了字节序大小端问题。所以,借这个机会单独整理了这篇文章,希望能加深大家对字节序问题的理解,加强对IM这种基于网络通信的程序在数据传输这一层的知识掌控情况。
一开始是由于不同架构的CPU处理多个字节数据的顺序不一样,比如x86的是小段模式,KEIL C51是大端模式。但是后来互联网流行,TCP/IP协议规定为大端模式,为了跨平台通信,还专门出了网络字节序和主机字节序之间的转换接口(ntohs、htons、ntohl、htonl)
对于涉及跨平台开发的项目,就可能会遇到数据大小端的问题,其实就是一个数字在内存中的字节序的问题,判断当前系统是大小端有现成的例子,自己实现转换代码也非常方便,网上有好多不用多说。 但我是个懒人,就算是这么简单的代码,有现成的就不想自己写。 今天要说的是gcc本身已经提供了大小端的判断和数据转换的函数,真的没必要自己写。
我一直都不理解,为什么要有大小端区分,尤其是小端,总是会忘记,因为他不符合人类的思维习惯,但存在即为合理,存在就有他存在的价值。这里有一个比较合理的解释:计算机中电路优先处理低位字节,效率比较高,因为计算机都是从低位开始的,所以计算机内部处理都是小端字节序。但是我们平常读写数值的方法,习惯用大端字节序,所以除了计算机的内部,其他场景大都是大端字节序,比如:网络传输和文件储存时都是用的大端字节序。
小端 ( little-endian):低位字节在前,高位字节在后。大端(Big-Endian),则反之。具体而言,就是为了说清楚,CPU架构中1字(word)的存储顺序。计算机内存中数据自然流动的顺序就是:低位先来,高位紧随其后
联合体类型定义的变量包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
MurmurHash 是一种非加密型哈希函数,适用于一般的哈希检索操作。与其它流行的哈希函数相比,对于规律性较强的 key,MurmurHash 的随机分布特征表现更良好。
任意一个整数(当然是不能超过INT_MAX的一个数字),都是以2进制的表示方式存储的,表示方法有三种,分别为原码,反码,补码 而这三种方法都是既有符号位又有数值位的两个部分,符号位都是0来表示“正”,用1来表示“负”,最高的那位被当作是符号位,剩下来的31个bit全是数值位。 正数的三种表示形式都是相同的 而负数三种表示方式不同 原码:直接将数值按照正负数的形式,表示为二进制,就是原码 反码:将原码的符号位不改变,其余的按位取反。 补码:反码+1得到。 当然不管是正数还是负数,整数的存储存放的就是补码。 关于为什么要存放补码存贮,其实真正的原因是因为,使用补码,可以将符号位和数值域统一处理,同时加法和减法也可以统一处理,并且原码和补码的相互转换的处理过程是相同的,不需要额外的硬件电路(符号位不变,取反,+1)
16bit宽的数0x1234在Little-endian模式(以及Big-endian模式)CPU内存中的存放方式(假设从地址0x4000开始存放)为:
持续创作,加速成长!这是我参与「掘金日新计划 · 10 月更文挑战」的第2天,点击查看活动详情
关于整数在内存中的存储形式,在博主之前写的文章里已经介绍了!友友们可以去点下面链接去看,这里就不过多介绍。
使用这些内置类型就意味着开辟内存的大小和看待内存空间的视角,是C语言中必不可少的。
什么是计算机大小端?简单来说,大小端(Endian)是指数据存储或者传输时的字节序,大小端分大端和小端。 所谓大端(Big-Endian)模式,是指数据的低位(就是权值较小的后面那几位)保存在内存的高地址中,而数据的高位,保存在内存的低地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放。 所谓小端(Little-Endian)模式,是指数据的低位保存在内存的低地址中,而数 据的高位保存在内存的高地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部
一个变量的创建是要在内存中开辟空间的,空间的大小是根据不同的类型而决定的。 那数据在所开辟的内存当中是如何存储的呢? 比如:
字节序关系到我们的网络数据能否被正确地解析或使用。那么什么是字节序?又怎么处理字节序的问题呢?本文就来谈一谈字节序的问题。
因为在计算机系统中,数值统一用补码来表示和存储。原因在于,用补码来存储,可以将符号位和数值统一处理,同时加法减法也可以统一处理(CPU只有加法器),补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
编译连接然后下载到开发板上,然后启动调试,通过监视窗口可以看到u的地址,然后在内存窗口可以看到字节序是反序的,所以说明STM32F407是小端的。据某些资料说ARM内核是可以设置大小端的,但是STM32是外设自动进入了小端,似乎是无法调整的。
这段代码的结果是什么呢? 首先关于char,存储的时候是是一个字节,意味着的是最高只能是2的7次方-1。为什么是7次方呢? 因为char是有符号的类型,符号位占了一个字节,也就还剩下127为最高,最小为-128。 此外,127和-128其实是连在一起的,意思是,对于char或者是别的一些有符号的类型也相当于是这样的,从0开始一直加1,能到127,在加上1就会变成-128,然后再加,最后又到0。 所以,a=101加上27,变成的是相当于-128,存储方式是1000 0000作为补码存储再内存中,符号位是1。但是在和int类型的sum进行计算时会整型提升(可以点进去看看,里面有相关介绍),此时由于最高位置是1,所以高位补1,然后再取反+1。为-128,所以sum+=a为sum=200-128=72。
一般在计算机中数据指针取到的都是该数据存储的起始位置的地址。比如 int a;它在32位下占据4字节。现在有一个int *p = &a;那么将会取到该数据在内存中存放的起始地址。
这种类型定义的变量也包含一系列的成员,特征是这些成员公用同一块空间(所以联合也叫共用体)。
3.14 一面 40min 1. C的字节对齐,大小端对齐 2. 异步同步的区别 3. java的异常 4. 内存溢出和内存泄露 5. java需要垃圾回收吗 6. OOM需要处理吗 7. TCP的拥塞控制 8. MTU 9. Android的Button是View吗 10. View和Activity之间的关系 11. 智力题 4.1 一面 1.5h 1. 项目介绍 pass 2. java和C里new的区别 3. new 和 malloc的区别 4. http怎么支持分段传输(头部字段) 5. 进程线程
一个整形1,只占4个字节,为了节省内存空间,我们就用int类型来存储,而没必要用long long类型。
目录 大小端 如何理解 注意 基本概念 如何影响数据存储 如何存取 以小端为例 总结 取值范围 对于-128的理解 为什么存的是补码 ---- 大小端 数据在内存的存入有大小端之分 如何理解 吃鸡蛋:对于吃鸡蛋从大的一端还是小的一端这件事情,没有一定的合理说法 不通电脑硬件厂商的选择不同 注意 无论如何放,以同条件去取,都可以! 基本概念 记忆:小小小(成为小端),其他的是大端 如何影响数据存储 大小端存储方案本质是数据和空间按照字节为单位的一种映射关系
无论大端模式还是小端模式, condition拿到的都是0000 0000(十进制的0),两个if语句都不执行!
https://mp.weixin.qq.com/s/rGtgS9ZoHZQ7fPkzKp-0Tw
经常在写代码的时候需要处理宽字符,ASCII 字符,在代码中看到 wchar、char 等等。一般都是处理一个方法的时候发现需要的是某字符串,然后这边有什么字符串,之后查一个转换方法。还有对于 Unicode 、ANSI 这些不太分得清,所以花了一点时间看了一看。做个小结。
https://blog.csdn.net/Easonmax/article/details/134298830?spm=1001.2014.3001.5501
类对象模型是一种编程概念,用于描述和实现面向对象编程(OOP)中的类和对象。在这个模型中,类定义了对象的结构和行为,包括数据成员(属性)和成员函数(方法)。对象是类的实例,具有类的所有属性和方法。类对象模型支持封装、继承和多态等OOP特性,使得代码更加模块化、可重用和易于维护。通过类对象模型,程序员可以创建复杂的软件系统,提高开发效率和代码质量。
上一个专题我们详细的分享了c语言里面的结构体用法,读者在看这些用法的时候,可以一边看一边试验,掌握了这些基本用法就完全够用了,当然在以后的工作中,如果有遇到了更高级的用法,我们可以再来总结学习归纳。好了,开始我们今天的主题分享。
✨作者:@平凡的人1 ✨专栏:《C语言从0到1》 ✨一句话:凡是过往,皆为序章 ✨说明: 过去无可挽回, 未来可以改变 ---- 🌹感谢您的点赞与关注,同时欢迎各位有空来访我的🍁平凡舍 ---- 文章目录 @[toc] ✍前言 🍁数据类型 🍁数据类型的基本分类 🍁整形在内存中的存储 原码、反码、补码 🍁大小端介绍 🍁练习 🚩结语 ✍前言 HelloHello,大家好,今天我们来一起来探索数据的存储问题,我将大概用2篇博客来写这块的内容,今天,利用这一篇先来完成一部分,介绍数据类型,整形
需要注意的是:学习过Java的同学们知道有String(字符串类型),但是c语言没有,我们使用字符数组来代替(char arr [ ]).
详情请见拙文 【C语言】中的位操作符和移位操作符,原码反码补码以及进制之间的转换 其中详细介绍了整数在内存中的存储是依靠原反补码存储实现的
版权声明:本文为作者原创,如需转载请通知本人,并标明出处和作者。擅自转载的,保留追究其侵权的权利。golang群:570992072。qq 29185807 个人公众号:月牙寂道长 公众号微信号yueyajidaozhang https://blog.csdn.net/screscent/article/details/80005007
在计算机领域,大小端(Endianness)是指字节序的排列顺序。简单来说,就是存储器中多字节数据的字节序列,从高到低或从低到高的顺序不同。那么,何谓大小端呢?
许多操作系统使用8位的块作为最小可寻址内存单元,我们把内存看做一个很大的数组,最小可寻址单元的大小就是一个数组成员的大小。
整数的2进制表示法有三种,即 原码、反码和补码三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,最高位的一位是被当做符号位,剩余的都是数值位。
最近,该公司希望改变核心处理器,由小端处理器ARM为大端处理器POWERPC。bootloader以及kernel移植的工作对我来说,这是一个非常具有挑战性的工作。我很兴奋。
笔者在开发Linux应用程序时,由于判断大小端序的问题,使用的方法是用C语言判断,方法是可以判断得到系统是什么端序,但是太麻烦了。笔者是比较懒的人,不想写那么多代码,想一句命令就解决端序判断的问题。
最近基于MFC对话框,编写一个字节转码小工具(数值与字节码的相互转换,包括大小端和swap形式,数据包括整型、浮点型数据)。在使用串口、网络通信、嵌入式软件开发时,大小端字节序和Byte Swap是很常见的事情,许多工具软件诸如Modbus Poll和Modbus Slave都提供了数值(short,unsigned short,int, unsigned int,long long,unsigned long long,float,double等数值)的4种表示方式:Big-endian(大端)、Little-endian(小端)、Big-endian byte swap、Little-endian byte swap。如下图所示,Modbus Poll和Modbus Slave的Display菜单显示了这种情况:
0000 0000 0000 0000 0000 0000 0000 0000 到 1111 1111 1111 1111 1111 1111 1111 1111 1111 也就是0到255
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
三种表示方法均有符号位和数值位两部分,数值位的最高位被当作符号位,其中0表示“正”,1表示“负”,剩余的位则为数值位。
而C语言中除了8 bit的char之外,还有其他类型(大于8bite)以及寄存器宽度不一样
科学巨匠尚且如此,何况芸芸众生呢。我们不可能每个软件都从头开始搞起。大部分时候,我们都是利用已有的软件,不管是应用软件,还是操作系统。所以,对于MIPS架构来说,完全可以把在其它架构上运行的软件拿来为其所用。
先问大家一个隐私习惯,吃茶叶蛋的时候,你会先磕破鸡蛋比较小的那一端,还是比较大的那一端?
在深圳做嵌入式,大疆公司绝对是Top级别的,大疆的技术栈也很深。但2020受美国制裁后,有所缩招。另外提醒,研发岗对学历要求高一些。
通过两个问题作为学习联合体的记录 关键词是Union 使用方法和结构体基本无差别 唯一不同的是联合体的成员共用一块内存空间,而结构体是每个成员都有自己的空间 即Union \_Ua { int age; char str; }Ua,*PUa; &Ua=&Ua.age = &Ua.str;
并且我们有一个想法,为什么要有数据类型呢?直接丢给变量一整块空间让他使用不好吗。答案当然是不好,这样会导致空间浪费。本质是对内存进行合理划分。
领取专属 10元无门槛券
手把手带您无忧上云