首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

海量数据存储硬件平台解决思路

网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值!...如此海量的规模需要多大的存储空间,采用怎样的软硬件解决方案,小编有幸请到我们的存储硬件技术大拿守锋和大家一起聊聊腾讯的存储硬件架构及有关存储的技术应用。...2.2 数据的可靠性要求数据不能丢失 腾讯的存储系统是面向UGC(User Generated Content)的存储,也许一封多年前的邮件、一张多年前的文档对用户来说都是非常关键的,一张小时候的照片找不回来了可能是非常的遗憾...,所以对于用户来说希望存储的有效期是无限期的,但设备的寿命是有限的,如何能够长期保持用户的数据无丢失将是技术上非常的挑战。...3.1 采用容量存储部件提高存储密度 简单粗暴地采购容量的HDD硬盘,减少单位采购成本和提高存储密度,看似简单,其实也不简单。

3K50

海量数据存储技术(cpu制造瓶颈)

对于海量数据的处理 随着互联网应用的广泛普及,海量数据存储和访问成为了系统设计的瓶颈问题。对于一个大型的互联网应用,每天几十亿的PV无疑对数据库造成了相当高的负载。...为什么要数据切分 上面对什么是数据切分做了个概要的描述和解释,读者可能会疑问,为什么需要数据切分呢?像 Oracle这样成熟稳定的数据库,足以支撑海量数据存储与查询了?为什么还需要数据切片呢?...这种情况显然是应该避免的,因为它导致相同内容被存储到不同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。...为了具有可扩展性和高可用性特点,集群的必须具备以下两能力: (1) 负 载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。...集群的分类 集群主要分成三类:高可用集群(High Availability Cluster/HA), 负载均衡集群(Load Balance Cluster),高性能计算集群(High Performance

1.7K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    关于云计算的海量数据存储模型

    关于云计算的海量数据存储模型 引言 随着越来越多的人使用计算机,整个网络会产生数量巨大的数据,如何存储网络中产生的这些海量数据,已经是一个摆在面前亟待解决的问题。...,实现海量数据的分布式存储。...2.3 基于云计算的海量数据存储模型 根据数据海量特性,结合云计算技术,特提出基于云计算的海量数据存储模型,如所示在中,主服务控制机群相当于控制器部分,主要负责接收 应用请求并且根据请求类型进行应答。...存储节点机群相当于存储器部分,是由庞大的磁盘阵列系统或是具有海量数据存储能力的机群系统,主要功 能是处理数据资源的存取。HDFS 和Hbase 用来将数据存储或部署到各个计算节点上。...与云计算系统相比,云存储可以认为是配置了容量存储空间的一个云计算系统。

    2.1K10

    IM系统海量消息数据是怎么存储的?

    一、与消息相关的主要场景 1、存储和离线消息。 现在的IM系统,消息都要落地存储。这样如果接收消息的用户不在线,等他下次上线时,能获取到消息数据。...三、存储消息关键点 1、离线消息 离线消息读取频繁(写也有一定压力),但是检索逻辑简单(参看《一个海量在线用户即时通讯系统(IM)的完整设计》拉取离线消息章节)。...我们采用内存数据库(Redis)存储,主要结构使用SortedSet(可以有更高效的存储结构,但Redis不支持)。对于群消息,采用扩散写方式(一条群消息给每个群成员都写一份)。...2、历史消息 历史消息的访问频率低,但是每条消息都需要存储,我们采用关系型数据库(MySQL)存储,重点考虑写入效率。对于群消息,采用扩散读方式(每条群消息只写一条记录)。...离线消息读取策略参看《一个海量在线用户即时通讯系统(IM)的完整设计》拉取离线消息章节。理论上读取离线消息的时间复杂度为O(log(N)+M), N 为离线消息的条数, M 为一次读取消息的条数。

    7.6K10

    海量数据查询方案mysql_Mysql海量数据存储和解决方案之二—-Mysql分表查询海量数据

    关键词:分库分表,路由机制,跨区查询,MySQL 数据变更,分表数据查询管理器与线程技术的结合,Cache 前面已经讲过Mysql实现海量海量数据存储查询时,主要有几个关键点,分表,分库,集群,M-S,...分库是如何将海量的Mysql数据放到不同的服务器中,分表则是在分库基础上对数据现进行逻辑上的划分。...MySQL proxy: MySQL master/slave配合MySQL 5.1 partition:只是将一个表存储上逻辑分开,部分改善了性能,但是可扩展性仍然是问题。...MySQL对于海量数据按应用逻辑分表分数据库,通过程序来决定数据存放的表。但是 跨区查询是一个问题,当需要快速查找一个数据时你得准确知道那个数据存在哪个地方。...海量数据查询时,还有很重要的一点,就是Cache的应用。不过是不是Cache在任何时候都是万能贴呢?不一定。Cache也命中率,维护等问题。

    1.8K10

    hbase解决海量图片存储

    随着互联网、云计算及大数据等信息技术的发展,越来越多的应用依赖于对海量数据存储和处理,如智能监控、电子商务、地理信息等,这些应用都需要对海量图片的存储和检索。...表1:基于HBase的海量图片存储技术的表设计 HBase是采用面向列的存储模型,按列簇来存储和处理数据,即同一列簇的数据会连续存储。...由于用单元格(Cell)存储图片小文件的内容,上述存储数据的过程实际上隐含了把图片小文件打包的过程。 搭建HBase集群后,采用上面设计的表即可存储海量图片。...代码1:用HCoIumnDescriptor将数据块限制调整为512KB 图1 配置代码 上述基于HBase的海量图片存储技术具有如下优点: (1)通过将图片属性信息与图片内容存储到一个表中...虽然可通过配置将数据块大小调,但由于HBase本身设计,当数据块过大时,不适合随机读,从而影响图片读取性能。因此数据块不能无限调,推荐数据块最大不超过1M。

    2.6K20

    vivo 云服务海量数据存储架构演进与实践

    随着 vivo 云服务业务发展,云服务用户量增长迅速,存储在云端的数据量越来越大,海量数据给后端存储带来了巨大的挑战。云服务业务这几年最大的痛点,就是如何解决用户海量数据存储问题。...为了解决海量数据存储问题,云服务将分库分表的 4 板斧:水平分表、垂直分表、水平分库、垂直分库,全部进行了实践。 1、水平分表 荆棘之路 1:浏览器书签、便签单库单表,单表数据量已过亿级怎么办?...当空间存在瓶颈后,我们对各模块数据存储空间分布进行了分析,情况如下: 单库磁盘容量5T,联系人数据占用存储空间2.75T(55%),短信数据占用存储空间1T(20%),其他所有模块数据共占用存储空间500G...如果采用常规的扩容方案,那我们将面临着海量存量数据的迁移重新路由问题,成本太大。...最终线上联系人数据库进行数据压缩的效果如下: 六、写在最后 本文介绍了云服务随着业务发展,海量数据存储所带来的挑战,以及云服务在分库分表、数据数据压缩上的一些经验,希望能提供借鉴意义。

    1.9K00

    【鹅厂网事】海量数据存储硬件平台解决思路

    网络平台部以构建敏捷、弹性、低成本的业界领先海量互联网云计算服务平台,为支撑腾讯公司业务持续发展,为业务建立竞争优势、构建行业健康生态而持续贡献价值!...如此海量的规模需要多大的存储空间,采用怎样的软硬件解决方案,小编有幸请到我们的存储硬件技术大拿守锋和大家一起聊聊腾讯的存储硬件架构及有关存储的技术应用。...2.2 数据的可靠性要求数据不能丢失 腾讯的存储系统是面向UGC(User Generated Content)的存储,也许一封多年前的邮件、一张多年前的文档对用户来说都是非常关键的,一张小时候的照片找不回来了可能是非常的遗憾...,所以对于用户来说希望存储的有效期是无限期的,但设备的寿命是有限的,如何能够长期保持用户的数据无丢失将是技术上非常的挑战。...3.1 采用容量存储部件提高存储密度 简单粗暴地采购容量的HDD硬盘,减少单位采购成本和提高存储密度,看似简单,其实也不简单。

    95730

    海量数据存储与访问瓶颈解决方案-数据切分

    这些海量数据存储与访问成为了系统设计与使用的瓶颈,而这些数据往往存储数据库中,传统的数据库存在着先天的不足,即单机(单库)性能瓶颈,并且扩展起来非常的困难。...如果单机数据库易于扩展,数据可切分,就可以避免这些问题,但是当前的这些数据库厂商,包括开源的数据库MySQL在内,提供这些服务都是需要收费的,所以我们转向一些第三方的软件,使用这些软件做数据的切分,将原本在一台数据库上的数据...那么我们如何做数据切分呢? 数据切分 数据切分,简单的说,就是通过某种条件,将我们之前存储在一台数据库上的数据,分散到多台数据库中,从而达到降低单台数据库负载的效果。...; 二次扩展时,数据迁移、维护难度。...无论是垂直切分,还是水平切分,它们解决了海量数据存储和访问性能问题,但也随之而来的带来了很多新问题,它们的共同缺点有: 分布式的事务问题; 跨库join问题; 多数据源的管理问题 针对多数据源的管理问题

    1.8K61

    海量图片存储解决方案

    当今世界,互联网、大数据应用迅猛发展,物联网、人工智能、云计算 技术日新月异,随之而来的是各种企业和个人应用持续不断地产生亿级甚至是百亿级的海量小文件。...为此,杉岩数据推出了强大的对象存储产品,解决企业对海量图片、视频等非结构数据存储需求,以便更好的挖掘非结构化数据的价值。...三级数据可靠性体系,保障业务高可用 杉岩对象存储提供了先进的三级数据可靠性体系,通过单集群故障自愈、跨集群容灾、建立备份机制三措施来确保企业数据安全可靠,从而保障业务的高可靠和高可用性。...支持二到六个数据中心的数据容灾,包括双中心或者是更复杂的方式建立存储集群,不同数据中心之间进行数据异步传输。 · 第三级: 建立主存储和备份存储机制。...对象存储+AI,创造无限可能 在完成大量非结构化数据积累后,企业可以通过结合AI先进的数据分析与挖掘技术,发挥海量数据背后的价值,为更多智能化的新业务系统提供强劲助力,支撑企业业务发展。

    2.6K20

    如何依托腾讯云完成海量数据存储和备份

    在我们提供的安防监控体系中,每个监控系统每天会产生几个 T 的视频数据,这些未经处理的视频数据一般需要存储几个星期,经过剪辑和压缩处理的视频数据可能需要归档存储三个月至半年。...如此大量的视频数据,如果在本地备份并归档,将长期占用硬盘存储空间,不仅扩容麻烦,而且很容易出现单点故障,难以保证数据备份/归档安全。...因此,我们考虑依托公有云服务,来实现海量音视频监控数据存储、备份以及归档。...由于业务特性(安防监控的数据存储要求安全、海量、上传下载快),所以我们对现有的公有云产品做了调研,了解到,腾讯云的对象存储目前可支持:1、理论上无限存储空间;2、可以存储无限的单个文件;3、对每一个文件都进行...本地服务器承载了大量的存储压力,所以,云化改造的第一步,就是实现音视频数据的上传下载。

    6.4K10

    【Kafka专栏 06】Kafka消息存储架构:如何支持海量数据

    Kafka消息存储架构:如何支持海量数据? 01 引言 在大数据和实时流处理领域中,Apache Kafka已成为了一个不可或缺的组件。...而Kafka通过直接操作文件系统缓存和内核空间缓冲区,避免了数据的多次复制和移动,从而大大提高了消息的传输效率。 05 Kafka消息存储的优势 1....高吞吐量 Kafka通过将消息持久化到磁盘上的日志文件,并利用分段存储和索引机制,实现了高吞吐量的消息传递。这使得Kafka能够处理大量的消息数据,满足各种实时处理需求。 2....低延迟 Kafka的消息存储机制采用了追加写入和零拷贝技术,减少了数据在传输过程中的延迟。同时,Kafka还支持异步写入和批量处理等操作,进一步降低了消息的延迟。...通过深入理解这些组件的工作原理和技术细节,我们可以更好地掌握Kafka在大数据和实时流处理领域中的应用。同时,Kafka的高吞吐量、高可靠性和低延迟等特性也为处理海量数据提供了强有力的支持。

    8710

    Json海量数据解析Json海量数据解析

    Json海量数据解析 前言 ​ 在android开发中,app和服务器进行数据传输时大多数会用到json。...这时候每次登陆时候会去服务端同步所有的商品、分类等数据。而这时候,当商品的数量很大的时候,客户端拿到数据时候对app来说还是比较大的。...而server端是将所有的数据序列化为json字符串存入到文件,然后app去下载文件并进行解析。下面说下我的修改历程。...第一版代码是直接讲文件读出为字符串,使用gson直接反序列化 new Gson().fromJson(String s,Type type)这时候OOM,查看日志,发现文件读出字符串时候直接OOM了(当初并没有考虑会有这么数据...20W条数据,内存不断的被消耗。

    6.6K20

    海量数据, 为何总是 海量垃圾 ?!

    2017.9.10, 深圳, Ken Fang 雷军说:我拥有海量数据, 却不知道怎么用?每年, 花在存储海量数据的费用, 也是海量;足以使企业破产⋯ 为何会如此?...大家都明白的 Common Sense: 做海量数据分析, 要先能建立数据模型;有了数据模型, 我们才能从 “海量数据中, 去提炼出 “有用” 的数据。...海量数据分析最关键、最重要的ㄧ步:将海量数据 “转换” 为有用的数据。 而数据模型建立的前提是: @ 要能先分析出, 产生数据背后的 “用户的目的” 。例如:用户是基于什么样的社会事件?天灾?...这样的数据, 再如何的 “海量”, 也根本没法经由 “数据分析师”, 使用任何的数据分析工具, 建立出任何有效的数据模型;海量数据将永远没办法转换为有用的数据。 为什么谷歌能做得到?...所以, 别再采集, 更别再存储: “海量”、“没目的”、“没意义”、“不持续性” 的数据了⋯

    95850

    面对海量数据存储,如何保证HBase集群的高效以及稳定

    IT 咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。...HBase集群方面现在是由300多台物理机组成,数据量大概有两个P两个pb左右。 解决了用户哪些问题 HBase的应用上,用户可能首先要面临的是海量数据存储问题,然后是对性能和可靠性的关注。...HBase中相同的列簇数据是存在一个目录的,不同列簇数据分开进行存储。在有多个列簇的情况下进行检索,如果只是用key检索,而没有指定列簇,索引是要独立去检索的。...第四个是禁止缓存,我们在写数据的时候,如果客户端突然加载了大量的数据,而没有禁止缓存,可能就会把热数据会挤压出去。...数据迁移 数据迁移有几种情况。一种是HBase集群之间的迁移,一种是将Hive数据迁移到HBase。 ?

    93730

    聊聊HuggingFace如何处理模型下海量数据

    如今,使用GB的数据集并不罕见,特别是从头开始预训练像BERT或GPT-2这样的Tranformer模型。在这样的情况下,甚至连加载数据都可能是一个挑战。...output Number of files in dataset : 20979437051 Dataset size (cache file) : 19.54 GB 很好——尽管它有近 20 GB ,...HuggingFace Datasets 将每个数据集视为内存映射文件,它提供 RAM 和文件系统存储之间的映射,允许库访问和操作数据集的元素,而无需将其完全加载到内存中。...你通常能够以十分之几 GB/秒到几 GB/秒的速度迭代数据集。 这对于绝大多数应用程序来说都非常有效,但有时你必须使用太大而无法存储在笔记本电脑硬盘上的数据集。...:将多个数据集组合在一起以创建单个语料库。

    1.1K10

    什么是海量数据 海量数据与大数据的关系

    在人们还没有搞明白大数据的情况下,又出现了一个海量数据海量数据与大数据的关系是什么,他们有什么关联吗?还是大数据的升级版才是海量数据,今天来聊一下海量数据与大数据的关系吧!...image.png 1、什么是海量数据,什么是大数据 所谓的海量数据从字面上理解就是数据多到已经用大海来形容了,现实中也确实如此。...2、海量数据与大数据的关系 海量数据与大数据的关系其实是相互的,海量数据可以包含在大数据里面,同样大数据也可以包含在海量数据里面。...海量数据需要找合适的数据来进行计算时,大数据也可以将海量数据分解并帮助其计算完成。所以海量数据与大数据的关系是相互的,在对方有困难的时候都会伸出手来帮助,海量数据与大数据的关系一定是不错的。...海量数据与大数据通俗的说就是,海量数据有时候不能一个人完成的事情会找帮手一起完成,而大数据则是喜欢把一个大任务分解成多个小任务再逐一完成。

    4K30

    FastDFS 海量小文件存储解决之道

    支持 Linux、FreeBSD、AID 等Unix系统,解决了容量的文件存储和高并发访问问题,文件存取实现了负载均衡,适合存储 4KB~500MB 之间的小文件,特别适合以文件为载体的在线服务,如图片...【分组管理】以Group为单位,每个Group包含多台Storage Server,数据互为备份,存储容量以Group内容量最小的 storage 为准,已 Group 为单位组织存储方便应用隔离、负载均衡和副本数据定制...缺点:Group容量受单机存储容量的限制,数据恢复只能依赖Group其他机器重新同步。...Storage Server给客户端,最后在接收到客户端写文件请求时,Storage Server 会分配一个数据存储目录并写入。...(1)Storage C启动后向tracker 上报所属group、ip、port、版本号、存储目录数、子目录数、启动时间、老数据是否同步完成,当前状态等信息。

    2K10
    领券