ZestFinance目前也正在向信用风险管理的其他领域纵深扩展,2014年2月ZestFinance宣布推出基于大数据分析的收债评分(Collection Score),旨在为汽车金融、学生贷款、医疗贷款提供一种新的评分系统...ZestFinance对大数据技术的应用主要从大数据采集和大数据分析两个层面为缺乏信用记录的人挖掘出信用。...只有充分考察借款人借款行为背后的线索及线索间的关联性,才能提供深度、有效的数据分析服务,降低贷款违约率。...多维度的征信大数据可以使得ZestFinance能够不完全依赖于传统的征信体系,对个人消费者从不同的角度进行描述和进一步深入地量化信用评估。 大数据分析模型 ?...(3)ZestFinance的大数据分析模型也给信用风险管理带来复杂性的挑战。
随后,他要求每个业务部门将数据分析作为明年战略规划的重点之一。这一做法非常成功。一方面,大数据融入了各部门的战略目标中;另一方面,其鼓励各部门的管理人员关注大数据。...许多公司在该领域受挫,有些是因为没有设置高管明确负责数据分析或者制定相关规划;还有则是因为没有开展充分的讨论或者投入必要时间分清楚大数据分析的轻重缓急。...数据分析团队由经验资深的主管带领,该主管向首席信息官报告进程。同时,业务部门主管需要寻找各自数据分析侧重方向,培训一线经理相关技能。 当内部数据分析能力成为企业运营关键 第二种方案。...首席分析官向业务一线主管报告并领导与监管由内部顾问、分析模型师、软件工程师组成的数据分析中心。 这种方案大力调整了公司结构。它推进了业务部门数据转型过程。...首席数据官向首席信息官报告,但每日与首席分析师合作进行数据整合,开发新数据分析工具。 对追求数据分析潜力的公司而言,不久的将来,他们都需要选择何处增设领导职位。
618购物狂欢节前后,网民较常搜索的关键词在微博、微信、新闻三大渠道的互联网数据表现,同时通过分析平台采集618相关媒体报道和消费者提及数据。
这份《2015中国餐饮消费需求大数据分析报告》从互联网数据洞察消费者需求为出发点,抓取了北京、上海、广州、沈阳、南京、杭州、武汉和成都共8个城市的点评数据做了深入的分析。...报告还对中式正餐、中式快餐、西式简餐、以及新兴餐饮品类典型案例-烤鱼进行了消费者需求画像,共抓取了57万条在线点评,通过口味、服务、环境、地理位置、优惠/团购、上菜速度、等位、性价比等八个维度进行分析,...通过该报告研究发现,“口味”仍旧是餐饮消费者最关注的因素,也是差评最高的因素,如何提升“口味”是餐饮发展重中之重。 “服务”也属于差评率高的因素。
大数据分析技术尽管相对较新,仍然有 86% 的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。...下面呈现整个报告: 报告目录 什么是大数据? 大数据的影响? 从一次机遇成为必需品 如何使用大数据 机器学习 大数据,高价值 打破孤岛 机遇来临 一、什么是大数据?...三、SoftServe 大数据分析调查 为了帮助理解这一新场景,我们呈现了 2016 年的 SoftServe 大数据分析调查,这是在接下来 12 个月或更久的时间中可能会颠覆商业与公司的大数据趋势的审查报告...对其当前地位的战略重要性而言,大数据的优势在短时间内就显现了出来。但这一报告发现,尽管大数据分析技术相对较新却分布广泛,86% 的公司已经使用某种形式的大数据分析了。...这份报告显示,在下一个十年,大数据、机器学习和人工智能将无缝对接到许多不同公司的结构体系中。研究结果强调,大数据「甜蜜点」对每家公司是相异的,但是每个部门都能获得相当大的收益。
该数据显示,大数据分析技术尽管相对较新,仍然有86%的公司运用了大数据系统。此外,大中型公司认为大数据分析是必须的,并且接受基于大数据分析的新技术。 ...报告目录 1、什么是大数据? 2、大数据的影响? ...三、SoftServe大数据分析调查 为了帮助理解这一新场景,我们呈现了2016年的SoftServe大数据分析调查,这是在接下来12个月或更久的时间中可能会颠覆商业与公司的大数据趋势的审查报告...对其当前地位的战略重要性而言,大数据的优势在短时间内就显现了出来。但这一报告发现,尽管大数据分析技术相对较新却分布广泛,86%的公司已经使用某种形式的大数据分析了。...这份报告显示,在下一个十年,大数据、机器学习和人工智能将无缝对接到许多不同公司的结构体系中。研究结果强调,大数据「甜蜜点」对每家公司是相异的,但是每个部门都能获得相当大的收益。
基于此,大数据分析方法理论有哪些呢? ?...大数据分析的五个基本方面 PredictiveAnalyticCapabilities (预测性分析能力) 数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断...AnalyticVisualizations ( 可视化 分析) 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。...SemanticEngines (语义引擎) 我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。...挖掘 与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。
相信很多朋友们都接触过数据分析,如何写一份数据分析报告?!
TMDB电影数据分析报告 前言 数据分析的基本流程: 提出问题 理解数据 数据清洗 构建模型 数据可视化 形成报告 一、提出问题 本次报告的主要任务是:根据历史电影数据,分析哪种电影收益能力更好...四、数据可视化 本次数据分析只是对数据集进行了基本的描述性分析和相关性分析,构建模型步骤均与特征选取、新建数据框一起完成,本案例不属于机器学习范畴,因此不涉及构建模型问题。...(详见后续代码) 五、形成数据分析报告 代码部分: 导入包,并读取数据集: import numpy as np import pandas as pd import
概念、分类 数据分析系统的主要功能是从众多外部系统中,采集相关的业务数据,集中存储到系统的数据库中。...根据数据的流转流程,一般会有以下几个模块:数据收集(采集)、数据存储、数据计算、数据分析、数据展示等等。当然也会有在这基础上进行相应变化的系统模型。...按照数据分析的时效性,我们一般会把大数据分析系统分为实时、离线两种类型。实时数据分析系统在时效上有强烈的保证,数据是实时流动的,相应的一些分析情况也是实时的。...而离线数据分析系统更多的是对已有的数据进行分析,时效性上的要求会相对低一点。时效性的标准都是以人可以接受来划分的。 2. 网站流量日志数据分析系统 2.1.
...
“大数据”从概念走向落地的这几年,得益于外部利好环境,一部分企业开始尝试大数据,但从数据获取、预处理、储存、分析、可视化的实用性仍差强人意。...从最初的经营总结到决策支持,从数据分析师到大数据分析,市场需求的速度跑在人才进阶养成之前,你所拥有的技能够吃几年“老本”?...当我们谈及大数据分析人才时,仍会叹惋能力还不够,毕竟如今的数据分析已不仅仅局限于编程建模,而是向机器学习迈进。...为此,东湖大数据·数据智库获取8198份真实的企业大数据领域数据分析岗位相关的招聘数据,具有针对性的发布《2017大数据分析师能力模型与企业需求报告》,以多维度视角全面探究大数据分析人才的进阶之路与生存现状...来源:大数据栋察
作为火力发电主要燃料的煤炭不够用了。据国泰君安证券分析,从历史数据来看,煤炭的产能周期大概在4年至6年。本轮产能周期开始于2017年,受疫情影响,2020年煤炭...
基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 1. 可视化分析。...大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了...大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 4. 语义引擎。...大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。...大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和在线课程,看完之后自信满满,准备去投简历...,然后发现不清楚各种工具和模型的适用范围,也不知道数据报告需要包括哪些内容,面试的感觉就是一问三不知…… 你是一个工作了一段时间的白领,你觉得现在这份工作不适合你,你下班以后去逛知乎,在上面看到很多人在说大数据代表未来...,数据分析师是21世纪最性感的十大职业之一……你激动了,你也要成为数据分析师,你利用空余时间补上了统计知识,学了分析工具,然后发现自己目前的工作跟数据分析没啥关系,觉得没有相关经验没公司要你…… 这些问题的根源是什么...Step 6:洞察结论 这一步是数据报告的核心,也是最能看出数据分析师水平的部分。一个年轻的分析师和一个年迈的分析师拿到同样的图表,完全有可能解读出不同的内容。 举个例子: ?...我再换一种说法: 各位应该都写过议论文,一份好的数据分析报告其实就是一篇好的议论文,立论(背景)——破题(目的)——列举论据(图表+结论)——论证论点(小结及总结)——结题(策略或预测)。
麦肯锡全球研究所(McKinsey Global Institute,以下简称MGI)的新报告,‘数据分析的时代:大数据环境下的商业竞争,表明大数据的应用范围和机遇仍在扩展。...鉴于科技的飞速发展,许多公司当前需要面对如何将大数据整合到他们的运营与战略中——在大数据分析可能颠覆整个行业的环境找准自己的定位。...MGI的一份报告早在2011年就指出大数据将大有作为,五年后的今天,我们仍然认为大数据的潜力还有很大。事实上,技术融合的趋势正在加速。...大数据和数据分析价值获取进度不均衡。 ?...大数据和数据分析已经使多个行业动摇,并且随着数据分析的应用达到临界质量——机器将获得前所未有的能力来解决问题和理解语言,这些影响将变得更加明显。
在2017第三届中国(贵阳)大数据交易高峰论坛上,贵阳大数据交易所正式发布《大数据交易区块链技术应用标准》,分别从架构标准、治理标准、交易标准、安全标准四个方面进行了阐述,助力区块链技术在大数据交易领域深化应用...本文来源:贵阳大数据交易所
我们一起来看看《618全网销售数据分析报告》吧。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?...主要分享和研究机器学习、深度学习、NLP 、Python,大数据等前沿知识、干货笔记和优质资源。回复就无套路送你一份机器学习大礼包。
用Python进行数据分析的好处是,它的数据分析库目前已经很全面了,有NumPy、pandas、SciPy、scikit-learn、StatsModels,还有深度学习、神经网络的各类包。...用Python的好处是从数据抽取、数据收集整理、数据分析挖掘、数据展示,都可以在同一种Python里实现,避免了开发程序的切换。 这里就和大家分享我做的一个应用实例。
领取专属 10元无门槛券
手把手带您无忧上云