这里我选择的是apache-jena-fuseki-3.14.0.zip (SHA512, PGP)
上篇文章《电影知识图谱问答(二)|生成298万条RDF三元组数据》中讲到如何将爬取得到的豆瓣电影和书籍数据转换成知识图谱所需的RDF类型数据,本篇文章将介绍如何将得到的298万条RDF类型数据存储到知识图谱数据库之中,并介绍如何利用SPARQL进行知识检索。实践之前,请自主学习Apache Jena, Apache Fuseki, SPARQL相关知识。
在上一篇我们学习了如何利用 D2RQ 来开启 endpoint 服务,但它有两个缺点:
数据获取 基于自然语言处理技术的实体抽取(中文命名实体识别平台如TLP、HanLP等均提供了不错的接口),当然也可以根据项目需求采用传统的机器学习或深度学习模型进行抽取、特定领域的新词发现等(难度较高、而且不完全适用,依领域而定) 人工非结构化数据抽取(众包标注平台)、人工辅助修正 以构造的实体为出发点在相关的平台爬虫爬取结构化数据作为补充,可重复迭代 人工非结构化数据抽取 其他团队已有的研究成果、数据库数据(本体对齐) 本体建模 基于protege开源工具(https://protege.stanford
上篇文章《电影知识图谱问答(三)|Apache Jena知识存储及SPARQL知识检索》中讲到如何将处理后的RDF数据存储至Apache Jena数据库之中、如何利用SPARQL语句从Apache Jena之中进行知识检索和答案推理。本篇文章将主要介绍如何理解问句所表达的深层语义含义、如何将自然语言问句转换成SPARQL查询语句、如何进行答案推理。
RDF(Resource Description Framework),即资源描述框架,其本质是一个数据模型(Data Model)。它提供了一个统一的标准,用于描述实体/资源。简单来说,就是表示事物的一种方法和手段。
知识图谱学习笔记第一部分,包含RDF介绍,以及Jena RDF API使用 知识图谱的基石:RDF RDF(Resource Description Framework),即资源描述框架,其本质是一个
资源描述框架(Resource Description Framework),一种用于描述Web资源的标记语言。使用XML语法和RDF Schema(RDFS)来将元数据描述成为数据模型。
日前,上海交通大学王新兵教授和张伟楠教授指导的 Acemap 团队知识图谱小组发布了学术知识图谱 AceKG。从官网可以看到,Acemap 知识图谱(AceKG)描述了超过 1 亿个学术实体、22 亿条三元组信息,包含六千多万篇论文、五千多万位学者、五万多个研究领域、将近两万个学术研究机构等,数据集将近 100G。 知识图谱(Knowledge Graph)是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。通过将应用数
A knowledge graph for Chinese cookbook(中式菜谱知识图谱),可以实现知识图谱可视化和知识库智能问答系统(KBQA)
基于知识图谱的问答系统,即KBQA。其中一个简单的实现方法是根据用户输入的自然语言问句,转化为图数据库中的关系查询,最终将数据库中的实体及关系呈现给用户。
因csdn语法支持与github不太一样,欢迎访问本文github版:https://github.com/JimXiongGM/KnowledgeBasedSearch/blob/master/知识推理机复现.md
本系列参考了市面上已知的,几乎全部“知识图谱”相关文章,并总结提炼出一套适合初学者入门的“知识图谱”的知识体系,希望大家能有所收获。
描述逻辑的公理可以用来定义术语,所以称为Terminological Box,简称Tbox
《海贼王》(英文名ONE PIECE) 是由日本漫画家尾田荣一郎创作的热血少年漫画,因为其宏大的世界观、丰富的人物设定、精彩的故事情节、草蛇灰线的伏笔,受到世界各地的读者欢迎,截止2019年11月7日,全球销量突破4亿6000万本^1,并被吉尼斯世界纪录官方认证为“世界上发行量最高的单一作者创作的系列漫画”^2。
一切要从一个倒霉项目开始说起,项目要求根据一个构建好的本体文件,通过JAVA调用相应API实现对本体文件的编辑、推理以及检索。由于之前对本体、知识图谱这些完全不熟悉,被强行推入坑之后就开始了漫长且毫无希望的技(疯)术(狂)调(百)研(度)之路。。。。
【导读】知识图谱技术是人工智能技术的组成部分,其强大的语义处理和互联组织能力,为智能化信息应用提供了基础。我们专知的技术基石之一正是知识图谱-构建AI知识体系-专知主题知识树简介。下面我们特别整理了关于知识图谱的技术全面综述,涵盖基本定义与架构、代表性知识图谱库、构建技术、开源库和典型应用。主要基于的参考文献来自[22]和[40], 本人(Quan)做了部分修整。 昨天我们介绍了《知识图谱的概念以及构建技术-知识提取、知识表示、知识融合》,今天介绍知识图谱的知识推理和典型应用。 知识图谱构建的关键技术 1
【新智元导读】由上海交通大学王新兵教授和张伟楠教授指导的Acemap团队知识图谱小组,近日发布了学术知识图谱AceKG,提供了近100G大小的数据集,为每个实体提供了丰富的属性信息,涵盖权威学术知识,旨在为众多学术大数据挖掘项目提供支持。 Acemap学术知识图谱网址: http://acemap.sjtu.edu.cn/app/AceKG/ 知识图谱是知识工程的一个分支,由语义网络发展而来,由于其在搜索与推荐系统中的极大应用前景,近几年在机器学习、自然语言处理等最新技术的推动下迅速发展,受到了业界和学术界
网页安全色有216中,但支持颜色名称作为颜色值的只有16种,分别是aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, yellow。 然而这16种Web自带的标准色看上去是极为「老土」的,几乎没有设计师愿意去使用,在这里为大家分享16 种更好看的 WEB 默认标准色:colors.css,颜色变好看了,而且已有写好的 CSS 样式文件。
一 基础架构详解 1 概念 讲调优之前,需要大家深入了解phoenix的架构,这样才能更好的调优。 Apache Phoenix在Hadoop中实现OLTP和运营分析,实现低延迟应用是通过结合下面两个优势: 具有完整ACID事务功能的标准SQL和JDBC API的强大功能 通过利用HBase作为后台存储,为NoSQL世界提供了late-bound, schema-on-read灵活的功能。 Apache Phoenix与其他Hadoop产品完全集成,如Spark,Hive,Pig,Flume和Map
Lucene是apache软件基金会4 jakarta项目组的一个子项目,是一个开放源代码的全文检索引擎工具包,但它不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎(英文与德文两种西方语言)。Lucene的目的是为软件开发人员提供一个简单易用的工具包,以方便的在目标系统中实现全文检索的功能,或者是以此为基础建立起完整的全文检索引擎 全文检索概述 比如,我们一个文件夹中,或者一个磁盘中有很多的文件,记事本、world、Excel、pdf,我们想根据其中的
最近有点忙hhh,所以文章都不够完善就没更新(都是写的杂七杂八的没啥营养,可以在我的语雀里看),因为有个同学问我SSL证书怎么部署,想着这一周还没发过博客,就写一篇教程吧,假装有更新了。
Drill 是一个用于大数据探索的 Apache 开源 SQL 查询引擎。 Drill 的设计初衷是支持对来自现代大数据应用程序的半结构化和快速发展的数据进行高性能分析,同时仍然提供行业标准查询语言 ANSI SQL 的熟悉度和生态系统。 Drill 提供与现有 Apache Hive 和 Apache HBase 部署的即插即用集成。
Apache IoTDB v0.13 已经发布,此版本新增对齐序列存储模型,增加了对触发器等功能的支持;优化了现有 SQL 语法,并增加了新的语法支持;提升了查询功能,增加了对连续查询、嵌套表达式等的支持;优化了数据写入的过程,提升了系统文件合并的性能;拓展了与外部系统的兼容,新增 Grafana 插件、REST API 等。
前置文章参考《0585-Cloudera Enterprise 6.2.0发布》和《0589-Cloudera Manager6.2的新功能》
最近,谷歌宣布正式发布 Hive-BigQuery Connector,简化 Apache Hive 和 Google BigQuery 之间的集成和迁移。这个开源连接器是一个 Hive 存储处理程序,它使 Hive 能够与 BigQuery 的存储层进行交互。
Confluent提供了业界唯一的企业级事件流平台,Confluent Platform通过将来自多个源和位置的数据集成到公司的单个中央事件流平台中,可以轻松构建实时数据管道和流应用程序。Confluent平台使您可以专注于如何从数据中获取业务价值,而不必担心诸如在各种系统之间传输或处理数据的基本机制。具体来说,Confluent平台简化了将数据源连接到Kafka,使用Kafka构建应用程序以及保护,监视和管理Kafka基础架构的过程。
Table API和SQL集成在共同API中。这个API的中心概念是一个用作查询的输入和输出的表。本文档显示了具有表API和SQL查询的程序的常见结构,如何注册表,如何查询表以及如何发出表。 Table API和SQL捆绑在flink-table Maven工程中。 为了使用Table API和SQL,必须将以下依赖项添加到您的项目中: <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table_2.10</a
通过RDF(S)可以表达一些简单的语义,但在更复杂的场景下,RDF(S)语义表达能力显得太弱,还缺少诸多常用的特征。包括对局部值域的属性定义,类、属性、个体的等价性,不相交类的定义,基数约束,关于属性特征的描述等。因此W3C提出了OWL语言扩展RDF(S),作为语义网上表示本体的推荐语言。
Java程序员面对的最痛苦的事情之一就是在Java代码中嵌入SQL语句。这么来做通常是由于SQL语句需要动态来生成-否则可以将它们放到外部文件或者存储过程中。正如你已经看到的那样,MyBatis在它的XML映射特性中有一个强大的动态SQL生成方案。但有时在Java代码内部创建SQL语句也是必要的。此时,MyBatis有另外一个特性可以帮到你,在减少典型的加号,引号,新行,格式化问题和嵌入条件来处理多余的逗号或 AND 连接词之前。事实上,在Java代码中来动态生成SQL代码就是一场噩梦。例如:
ClickHouse中完整select的查询语法如下(除了SELECT关键字和expr_list以外,蓝色的字句都是可选的):
由Apache Flink提供支持的Cloudera Streaming Analytics的1.2.0.0版本提供了广泛的新功能 ,包括通过Apache Atlas 支持血缘和元数据跟踪,支持连接到Apache Kudu 以及期待已久的FlinkSQL API 的第一次迭代。
使用Replication Manager 将 Hive 数据迁移到 CDP 后,您可能需要执行其他任务。您需要了解 Hive 3.x 和更早版本之间的语义差异。其中一些差异要求您更改 Hive 脚本或工作流程。此外,您需要将使用 CDP 不支持的 Hive CLI 的脚本转换为 Beeline。
Apache Kylin,作为一款开源的大数据分析平台,以其独特的预计算技术,为用户提供亚秒级的OLAP查询体验。无论是数据分析师还是大数据工程师,掌握Kylin的使用技巧,都将极大地提升数据洞察力和决策效率。本文将从Kylin的基本概念出发,深入解析其工作原理,分享我在使用过程中的常见问题及解决方案,同时附上实战代码示例,帮助你更有效地驾驭这一强大的分析工具。
上一篇《SparkCore快速入门系列(5)》,下面给大家更新一篇SparkSQL入门级的讲解。
Apache Phoenix主要是基于HBase一款软件, 提供了一种全新(SQL)的方式来操作HBase中数据, 从而降低了使用HBase的门槛, 并且 Phoenix提供了各种优化措施
距离上一次更新刚过了二十多天,距离0.17版本刚过了三个多月,Druid再次迎来重大更新,Druid也越来越强大了。
Pinot 是一个实时分布式的 OLAP 数据存储和分析系统。使用它实现低延迟可伸缩的实时分析。Pinot 从脱机数据源(包括 Hadoop 和各类文件)和在线数据源(如 Kafka)中获取数据进行分析。Pinot 被设计成可进行水平扩展。Pinot 特别适合这样的数据分析场景:查询具有大量维度和指标的时间序列数据、分析模型固定、数据只追加以及低延迟,以及分析结果可查询。本文介绍了 Pinot 在 Uber 的应用情况。
随着社交、电商、金融、零售、物联网等行业的快速发展,现实社会织起了了一张庞大而复杂的关系 网,传统数据库很难处理关系运算。大数据行业需要处理的数据之间的关系随数据量呈几何级数增长, 急需一种支持海量复杂数据关系运算的数据库,图数据库应运而生。 世界上很多著名的公司都在使用图数据库,比如:
MyBatis 的强大特性之一便是它的动态 SQL。如果你有使用 JDBC 或其它类似框架的经验,你就能体会到根据不同条件拼接 SQL 语句的痛苦。例如拼接时要确保不能忘记添加必要的空格,还要注意去掉列表最后一个列名的逗号。利用动态 SQL 这一特性可以彻底摆脱这种痛苦。
摘要:Elasticsearch是基于Apache Lucene的开源搜索和分析引擎,允许用户以近乎实时的方式存储,搜索和分析数据。虽然Elasticsearch专为快速查询而设计,但其性能在很大程度上取决于用于应用程序的场景,索引的数据量以及应用程序和用户查询数据的速率。这篇文章概述了挑战和调优过程,以及Pronto团队以战略方式构建应对挑战的工具。它还以各种图形配置展示了进行基准测试的一些结果。以下是正文。 Elasticsearch是基于Apache Lucene的开源搜索和分析引擎,允许用户以近乎实
使用Apache Hive,您可以查询包括Hadoop数据在内的分布式数据存储。
GROUP BY 语句通常会和聚合函数一起使用,按照一个或者多个列队结果进行分组,然后对每个组执行聚合操作。
当为应用程序的数据选择一个存储系统时,我们通常会选择一个最适合我们业务场景的存储系统。对于快速更新和实时分析工作较多的场景,我们可能希望使用Apache Kudu,但是对于低成本的大规模可伸缩性场景,我们可能希望使用HDFS。因此,需要一种解决方案使我们能够利用多个存储系统的最佳特性。本文介绍了如何使用Apache Impala的滑动窗口模式,操作存储在Apache Kudu和Apache HDFS中的数据,使用此模式,我们可以以对用户透明的方式获得多个存储层的所有优点。
数据库实际上是一个用于存储数据的电子文件柜。同时,用户可以添加、删除、更改和检查数据。在企业应用中,数据库非常重要,因此程序员在面试时经常被问及数据库。当面试官问你对数据库优化了解多少时,你应该如何回
Phoenix 最早是 saleforce 的一个开源项目,后来成为 Apache 的顶级项目。 Phoenix 构建在 HBase 之上的开源 SQL 层. 能够让我们使用标准的 JDBC API 去建表, 插入数据和查询 HBase 中的数据, 从而可以避免使用 HBase 的客户端 API. 在我们的应用和 HBase 之间添加了 Phoenix, 并不会降低性能, 而且我们也少写了很多代码.
图数据库JanusGraph介绍及使用(一):简介 https://blog.csdn.net/gobitan/article/details/80939224
在将 Impala 工作负载从 CDH 平台迁移到 CDP 之前,您必须了解 CDH 和 CDP Impala 之间的语义和行为差异以及需要在数据迁移之前执行的活动。
本节我们介绍 Mybatis 的强大特性之一:动态 SQL ,从动态 SQL 的诞生背景与基础概念,到动态 SQL 的标签成员及基本用法,我们徐徐道来,再结合框架源码,剖析动态 SQL (标签)的底层原理,最终在文末吐槽一下:在无动态 SQL 特性(标签)之前,我们会常常掉进哪些可恶的坑吧~
领取专属 10元无门槛券
手把手带您无忧上云