首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用MNE-python拆分不同频段的EEG诱发电位?

MNE-python是一个用于处理脑电图(EEG)和磁图(MEG)数据的Python库。它提供了丰富的功能和工具,可以用于数据预处理、信号处理、可视化和统计分析等方面。

要使用MNE-python拆分不同频段的EEG诱发电位,可以按照以下步骤进行:

  1. 导入必要的库和模块:
代码语言:txt
复制
import mne
from mne.time_frequency import tfr_morlet
  1. 加载EEG数据:
代码语言:txt
复制
raw = mne.io.read_raw_eeglab('eeg_data.set')

这里假设EEG数据保存在名为'eeg_data.set'的文件中。

  1. 创建事件:
代码语言:txt
复制
events = mne.find_events(raw)

根据实际情况,可以使用不同的事件标记来定义感兴趣的时间段。

  1. 定义频段范围:
代码语言:txt
复制
freq_bands = {'alpha': [8, 12], 'beta': [13, 30]}

根据需要,可以定义不同的频段范围。

  1. 拆分频段:
代码语言:txt
复制
epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline=None, preload=True)

这里的event_id是一个字典,用于定义不同事件类型的标识符。tmin和tmax是感兴趣的时间段的起始和结束时间。

  1. 计算诱发电位:
代码语言:txt
复制
power = tfr_morlet(epochs, freqs=freq_bands, n_cycles=2, return_itc=False)

这里使用了Morlet小波变换来计算诱发电位。n_cycles参数表示每个频段的小波周期数。

  1. 可视化结果:
代码语言:txt
复制
power.plot_topo(baseline=(-0.5, 0), mode='logratio', title='Induced power')

这将绘制不同频段的诱发电位拓扑图。

以上是使用MNE-python拆分不同频段的EEG诱发电位的基本步骤。根据具体需求,可以进一步进行数据处理、统计分析等操作。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云产品:https://cloud.tencent.com/product
  • 腾讯云人工智能:https://cloud.tencent.com/product/ai
  • 腾讯云物联网:https://cloud.tencent.com/product/iotexplorer
  • 腾讯云存储:https://cloud.tencent.com/product/cos
  • 腾讯云区块链:https://cloud.tencent.com/product/baas
  • 腾讯云元宇宙:https://cloud.tencent.com/product/vr 请注意,以上链接仅供参考,具体产品选择应根据实际需求和情况进行评估。
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • BCI--脑电基础整理

    脑机接口(BCI),是一种通过检测中枢神经系统活动并将其转化为人工输出,来替代、修复、增强、补充或者改善中枢神经系统的正常输出,从而改变中枢神经系统与内外环境之间的交互作用的技术。脑机接口技术通过置于头皮或颅内的电极等传感器采集脑神经活动信号,经过信号处理、特征提取、模式识别等过程,可获知人的控制意图、认知或心理状态、神经系统疾病状态等信息,为运动、语言等功能残缺的患者提供新的控制、交流通道或康复手段,也可为健康人群提供更多信息输出通道。随着脑电信号采集技术与信号处理技术的发展成熟,脑机接口技术已逐渐走入临床应用,在诸如中风、注意力缺陷等脑损伤或其他神经系统疾病患者的临床康复中表现出色,为高位截瘫、肌萎缩性侧索硬化症等运动功能障碍患者提供新的运动功能替代方案,为情绪、疲劳、意识状态等的检测和识别提供客观指标。

    04

    通过脑电图/脑磁图观察到的大脑活动来指导经颅脑刺激

    非侵入性经颅脑刺激(NTBS)技术的应用范围广泛,但也存在诸多局限性,主要问题是干预的特异性、效应大小不一。这些局限性促使最近的研究将NTBS与正在进行的大脑活动的结合。正在进行的神经元活动的时间模式,特别是大脑振荡及其波动,可以用脑电或脑磁图(EEG/MEG)跟踪,以指导NTBS的时间和刺激设置。在线脑电图/脑磁图已用于指导NTBS的时机(即刺激时间):通过考虑大脑振荡活动的瞬时相位或功率,NTBS可以与兴奋性状态的波动对齐。此外,干预前的离线脑电图/脑磁图记录可以告诉研究人员和临床医生如何刺激:通过调频NTBS到感兴趣的振荡区域,内在的大脑振荡可以被上调或下调。本文综述了脑电/脑磁图引导干预的现有方法和思路,以及它们的前景和注意事项。本文发表在Clinical Neurophysiology杂志。

    03

    Brain Stimulation:经颅超声神经调控的人体研究—对其有效性和安全性的系统综述

    经颅超声刺激(Transcranial ultrasound stimulation,TUS)作为一种安全、无侵入性的技术在人体研究中越来越关注。本文回顾人体研究,关注于TUS设备、超声参数、结果测量、结果和不良反应,并强调未来的研究方向。通过系统综述至2022年1月12日Web of Science和PubMed数据库中35项聚焦/非聚焦TUS的人体研究,包含677名受试者,属于不同的队列,包括健康、慢性疼痛、痴呆、癫痫、创伤性脑损伤、抑郁症的患者,刺激效果随超声参数变化不一致,评估方式包括临床、神经生理学、放射学和组织学指标。虽然研究中未报告严重的不良反应,但3.4%(14/425)的受试者观察到轻度症状,包括头痛、情绪恶化、头皮发热、认知问题、颈部疼痛、肌肉抽搐、焦虑、嗜睡和瘙痒。总之,TUS仍处于早期阶段,TUS可以改变短期的大脑兴奋性和连通性,诱导长期的可塑性并调节行为。未来应该进一步阐明其潜在机制,从而拓展应用。

    02

    天津大学研究团队提出基于源混叠矩阵估计的稳态视觉诱发电位扩增方法

    针对稳态视觉诱发电位(steady-state visual evoked potential, SSVEP)识别面临的校准数据不足的问题,天津大学神经工程团队提出了一种源混叠矩阵估计方法(source aliasing matrix estimation, SAME)来扩增SSVEP信号的校准数据。在Benchmark和BETA公开数据集上的结果表明,当与SAME方法结合后,两种先进的空间滤波方法(eTRCA, TDCA)在校准数据不足的情况下均有显著的性能提高。SAME可以有效扩增基于稳态视觉诱发电位的脑机接口系统的校准数据,从而减少系统的校准负担,相关研究成果在实用型脑机接口方面具有潜在的应用价值,已在线发表至《IEEE Transactions on Biomedical Engineering》期刊。

    03

    一种灵活,坚固且无凝胶的脑电图电极,可用于无创脑机接口

    脑机接口(BCI)能够在大脑和电子设备之间实现直接和近乎即时的通信。目前最大的挑战之一是开发一种有效的无创BCI,它能使记录电极避免人类皮肤上的毛发,同时又不带来使用导电凝胶的不便和隐患。在这项研究中,清华大学研究人员开发了一种低成本、易于制造、柔韧、坚固且不含凝胶的脑电图(EEG)电极【银纳米线/聚乙烯醇缩丁醛(PVB)/三聚氰胺海绵(AgPMS)】,可以解决头发问题。由于银纳米线(AgNWs)表面金属化,海绵在重量不变的情况下导电率高达917 S/m。柔软的海绵框架和自锁式AgNW结合在一起,为新电极提供了非常好的机械稳定性(电导率在10%的压缩下循环10000次后保持不变)。基于稳态视觉诱发电位(SSVEP)在无毛皮肤上的BCI应用表明,新电极的BCI精度(86%)与导电凝胶支撑的传统电极(88%)大致相同。最重要的是,AgPMS在多毛皮肤上的性能并没有明显降低,这表明新电极可以替代传统电极用于无毛和多毛皮肤BCI及其他EEG应用。

    03

    一种用于干式脑电图的高密度256通道电极帽

    高密度脑电图(HD-EEG)目前仅限于实验室环境,因为最先进的电极帽需要熟练的工作人员和大量的准备工作。我们提出并评估了一种带干式多针电极的256通道脑电图帽。本文介绍了以聚氨酯为原料,涂覆Ag/AgCl的干电极的设计。在一项有30名志愿者参与的研究中,我们将新型干式hd-脑电图帽与传统的凝胶型脑电图帽进行电极皮肤阻抗、静息状态脑电图和视觉诱发电位(VEP)的比较。我们用8个电极在真实的人体和人造皮肤上模拟帽子应用进行佩戴测试。256个干电极中的252个平均阻抗低于900 kΩ,就可以用最先进的脑电图放大器进行记录。对于干式脑电图帽,我们获得了84%的通道可靠性和减少69%的准备时间。在排除平均16%(干性)和3%(凝胶性)坏通道后,静息状态EEG、alpha活动和模式逆转VEP可以在所有比较的信号特征指标中记录到小于5%的显著差异。志愿者报告说,在EEG记录之前和之后,干帽的佩戴舒适度分别为3.6±1.5和4.0±1.8,凝胶帽的佩戴舒适度分别为2.5±1.0和3.0±1.1(1-10分)。试验表明,干电极的使用可达3200次。256通道的HD-EEG干电极帽克服了HD-EEG在制备复杂性方面的主要限制,允许未经医学培训的人员快速应用,从而实现了HD-EEG的新用例。

    01

    3D卷积神经网络从神经生理学高度解码复杂大脑活动

    从EEG中准确解码出特定大脑活动是BCI技术中的关键步骤,最常用的手段就是深度神经网络。但是以往的深度神经网络往往都对大脑运动任务进行粗略分类,难以从神经生理学的高度解码EEG中精细的活动特征。今年1月份,Neeles和 Konstantinos团队发表在《Nature》子刊《Scientific reports》上的一篇报道提出了一个可以在神经生理学高度解释的三维卷积神经网络(3D-CNN),该网络能够捕获运动过程中EEG特征的时空特性,保留了大脑诱发活动中至关重要的时间成分。且在测试其对相似运动模式的分类时,准确率达到了80%以上。相比现在的2D-CNN,3D-CNN的这一改进使得网络分类决策过程和大脑活动的神经生理学吻合度更高,这对复杂大脑活动的实时分类是一个重大进步。

    02

    世界机器人大赛—BCI脑控机器人大赛 专刊出版!大赛优秀成果集中展示!

    由中国电子学会主办的世界机器人大赛(World Robot Contest)自2015年起已成功举办了七届,是国内外影响广泛的机器人领域官方专业赛事,被各大主流媒体广泛赞誉为机器人界的“奥林匹克”。作为大赛中一项“高精尖”科研类赛事,BCI脑控机器人大赛由国家自然科学基金委员会指导,委信息科学部、中国电子学会、清华大学共同主办,竞赛内容重点考察脑机接口技术在医疗康复和养老助残等领域的产学研成果,旨在推动该项技术与各领域产业交流合作,实现跨越融合发展。近日,BCI脑控机器人大赛正式获得脑机接口国际组织BCI Society的认证。

    05

    EEGNet:一个小型的卷积神经网络,用于基于脑电的脑机接口

    脑机接口(BCI)利用神经活动作为控制信号,可以与计算机直接通信。这种神经信号通常从各种研究充分的脑电图(EEG)信号中选择。对于给定的脑机接口(BCI)范式,特征提取器和分类器是针对其所期望的脑电图控制信号的不同特征而定制的,这限制了其对特定信号的应用。卷积神经网络(Convolutional neural networks, CNNs)已被用于计算机视觉和语音识别中进行自动特征提取和分类,并成功地应用于脑电信号识别中;然而,它们主要应用于单个BCI范例,因此尚不清楚这些架构如何推广到其他范例。在这里,我们想问的是,我们是否可以设计一个单一的CNN架构来准确地分类来自不同BCI范式的脑电图信号,同时尽可能小型的方法。在这项工作中,我们介绍了EEGNet,一个小型的卷积神经网络为基于脑电图的BCI。我们介绍了深度卷积和可分离卷积的使用来构建脑电图特定模型,该模型封装了众所周知的脑机接口脑电图特征提取概念。我们比较了EEGNet,包括被试内和跨被试分类,以及目前最先进的四种BCI范式:P300视觉诱发电位、错误相关负波(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)。我们表明,当在所有测试范例中只有有限的训练数据可用时,EEGNet比参考算法更好地泛化,并取得了相当高的性能。此外,我们还演示了三种不同的方法来可视化训练过的EEGNet模型的内容,以支持对学习到的特征的解释。意义:我们的结果表明,EEGNet足够鲁棒,可以在一系列BCI任务中学习各种各样的可解释特征。本文发表在Journal of Neural Engineering杂志。

    03

    电生理绘图和源成像

    在这一章中,我们介绍了EEG和MEG信号产生和传播背后的基础。我们首先介绍生物物理原理,解释神经元细胞内外离子的协调运动如何导致头皮的宏观现象,如EEG记录的电势和MEG感知的磁场。这些物理原理使EEG和MEG信号具有特定的时空特征,可用于研究大脑对内部和外部刺激的反应。我们通过开发一个数学框架来继续我们的探索,在这个数学框架中,如果已知潜在脑源的分布,就可以计算EEG和MEG信号,这个过程称为正向问题。我们将继续讨论相反的方法,即通过头皮测量(如EEG和MEG)来解决潜在的脑源,这一过程被称为源成像。我们将提供各种例子,说明电生理源成像技术如何帮助研究正常和病理状态下的大脑。我们还将简要讨论如何将来自EEG的电生理信号与来自功能磁共振成像(fMRI)的血流动力学信号结合起来,帮助提高对潜在脑源估计的时空分辨率,这对研究大脑的时空过程至关重要。本章的目标是提供适当的物理和生理直觉和生物物理原理,解释EEG/MEG信号的产生,它从脑源传播到EEG/MEG传感器,以及如何使用信号处理和机器学习技术和算法来反转这个过程。本文收录在Neural Engineering中。

    04
    领券