首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用r中的插入程序包对最佳调整的超参数进行10折交叉验证,从而获得每个折叠的预测?

在R中,可以使用插入程序包(tune)来进行超参数调优和交叉验证。下面是使用插入程序包对最佳调整的超参数进行10折交叉验证,并获得每个折叠的预测的步骤:

  1. 导入所需的包和数据集:
代码语言:txt
复制
library(tune)
data <- iris
  1. 创建一个参数网格,定义要调整的超参数的可能取值范围:
代码语言:txt
复制
grid <- expand.grid(.mtry = c(2, 3, 4), .splitrule = c("gini", "extratrees"))
  1. 定义一个控制参数对象,指定交叉验证的折叠数和重复次数:
代码语言:txt
复制
ctrl <- trainControl(method = "cv", number = 10, repeats = 1)
  1. 使用train函数进行超参数调优和交叉验证:
代码语言:txt
复制
model <- train(Species ~ ., data = data, method = "ranger", trControl = ctrl, tuneGrid = grid)

这里使用了ranger算法作为训练模型的方法,你可以根据具体需求选择其他算法。

  1. 查看最佳超参数组合和模型性能:
代码语言:txt
复制
print(model$bestTune)  # 最佳超参数组合
print(model$results)  # 每个超参数组合的性能指标
  1. 获取每个折叠的预测结果:
代码语言:txt
复制
predictions <- model$pred

predictions是一个包含每个折叠的预测结果的数据框。

以上是使用插入程序包进行超参数调优和交叉验证的基本步骤。在实际应用中,你可以根据具体的数据集和问题进行适当的调整和优化。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云机器学习平台(ModelArts):https://cloud.tencent.com/product/ma
  • 腾讯云数据分析平台(DataWorks):https://cloud.tencent.com/product/dp
  • 腾讯云人工智能开发平台(AI Lab):https://cloud.tencent.com/product/ai-lab
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 一个完整的机器学习项目在Python中演练(四)

    【磐创AI导读】:本文是一个完整的机器学习项目在python中的演练系列第第四篇。详细介绍了超参数调整与模型在测试集上的评估两个步骤。欢迎大家点击上方蓝字关注我们的公众号:磐创AI。 大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习。但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中。就像你的脑海中已经有了一块块”拼图“(机器学习技术),你却不知道如何讲他们拼起来应用在实际的项目中。如果你也遇见过同样的问题,那么这篇文章应该是你想要的。本系列文章将介绍

    05

    NC:数据泄漏会夸大基于连接的机器学习模型的预测性能

    预测建模是神经影像学中识别大脑行为关系并测试其对未见数据的普遍适用性的核心技术。然而,数据泄漏破坏了训练数据和测试数据之间的分离,从而破坏了预测模型的有效性。泄漏总是一种不正确的做法,但在机器学习中仍然普遍存在。了解其对神经影像预测模型的影响可以了解泄露如何影响现有文献。在本文中,我们在4个数据集和3个表型中研究了5种形式的泄漏(包括特征选择、协变量校正和受试者之间的依赖)对基于功能和结构连接组的机器学习模型的影响。通过特征选择和重复受试者产生的泄漏极大地提高了预测性能,而其他形式的泄漏影响很小。此外,小数据集加剧了泄漏的影响。总体而言,我们的结果说明了泄漏的可变影响,并强调了避免数据泄漏对提高预测模型的有效性和可重复性的重要性。

    01

    学界 | 综述论文:机器学习中的模型评价、模型选择与算法选择

    选自 Sebastian Raschka 机器之心编译 参与:路雪、刘晓坤、黄小天 本论文回顾了用于解决模型评估、模型选择和算法选择三项任务的不同技术,并参考理论和实证研究讨论了每一项技术的主要优势和劣势。进而,给出建议以促进机器学习研究与应用方面的最佳实践。 1 简介:基本的模型评估项和技术 机器学习已经成为我们生活的中心,无论是作为消费者、客户、研究者还是从业人员。无论将预测建模技术应用到研究还是商业问题,我认为其共同点是:做出足够好的预测。用模型拟合训练数据是一回事,但我们如何了解模型的泛化能力?我们

    08

    如何在交叉验证中使用SHAP?

    在许多情况下,机器学习模型比传统线性模型更受欢迎,因为它们具有更好的预测性能和处理复杂非线性数据的能力。然而,机器学习模型的一个常见问题是它们缺乏可解释性。例如,集成方法如XGBoost和随机森林将许多个体学习器的结果组合起来生成结果。尽管这通常会带来更好的性能,但它使得难以知道数据集中每个特征对输出的贡献。为了解决这个问题,可解释人工智能(explainable AI, xAI)被提出并越来越受欢迎。xAI领域旨在解释这些不可解释的模型(所谓的黑匣子模型)如何进行预测,实现最佳的预测准确性和可解释性。这样做的动机在于,许多机器学习的真实应用场景不仅需要良好的预测性能,还要解释生成结果的方式。例如,在医疗领域,可能会根据模型做出的决策而失去或挽救生命,因此了解决策的驱动因素非常重要。此外,能够识别重要变量对于识别机制或治疗途径也很有帮助。最受欢迎、最有效的xAI技术之一是SHAP。

    01
    领券