首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在使用变异后保留标签?

在使用变异后保留标签的方法有多种,以下是其中几种常见的方法:

  1. 使用无监督学习方法:无监督学习是一种机器学习方法,它不依赖于标签信息进行训练。在使用变异后保留标签的情况下,可以使用无监督学习方法对数据进行聚类或降维,然后根据聚类结果或降维后的特征进行标签的预测。常见的无监督学习方法包括K-means聚类、主成分分析(PCA)等。
  2. 使用半监督学习方法:半监督学习是介于无监督学习和有监督学习之间的一种学习方法,它同时利用有标签数据和无标签数据进行训练。在使用变异后保留标签的情况下,可以使用半监督学习方法对有标签数据进行训练,然后利用无标签数据进行标签的推断。常见的半监督学习方法包括自训练(self-training)、标签传播(label propagation)等。
  3. 使用迁移学习方法:迁移学习是一种通过将已学习的知识迁移到新任务中的学习方法。在使用变异后保留标签的情况下,可以使用迁移学习方法将已学习的知识应用于新的数据集,从而进行标签的预测。常见的迁移学习方法包括领域自适应(domain adaptation)、预训练模型(pre-trained model)等。
  4. 使用生成对抗网络(GAN):生成对抗网络是一种由生成器和判别器组成的网络结构,通过生成器生成与真实数据相似的数据,判别器则用于判断生成的数据与真实数据的区别。在使用变异后保留标签的情况下,可以使用生成对抗网络生成与原始数据相似的数据,并将生成的数据与原始数据一起进行训练,从而进行标签的预测。

需要注意的是,以上方法仅为常见的几种方法,具体选择哪种方法需要根据具体的数据和任务进行评估和选择。另外,腾讯云提供了多种与机器学习相关的产品和服务,如腾讯云机器学习平台(https://cloud.tencent.com/product/tcmlp)、腾讯云智能图像(https://cloud.tencent.com/product/tii)、腾讯云智能语音(https://cloud.tencent.com/product/tts)等,可以根据具体需求选择相应的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Nature Methods | 单细胞基因组图谱数据集成的基准测试

本文介绍由德国计算生物学研究所的M. Colomé-Tatché和Fabian J. Theis共同通讯发表在 Nature Methods 的研究成果:作者对来自23篇出版物的85批基因表达、染色质可及性和模拟数据的68种方法和预处理组合进行了基准测试,总共代表了分布在13个图谱集成任务中的超过120万个细胞。作者使用14个评估指标,根据可伸缩性、可用性及其在保留生物变异的同时消除批次效应的能力对方法进行评估。研究表明,高度可变的基因选择提高了数据集成方法的性能,而数据缩放推动方法优先考虑批次去除而不是保留生物变异。总体而言,scANVI、Scanorama、scVI 和 scGen 表现良好,尤其是在复杂的集成任务上,而单细胞 ATAC 测序集成性能受特征空间选择的影响很大。该文免费提供的 Python 模块和基准测试管道可以为新数据确定最佳的数据集成方法,还能对新开发的方法进行基准测试。

01
  • Nat. Biotechnol. | 通过迁移学习将单细胞数据映射到参考图谱

    本文介绍由德国慕尼黑工业大学的Fabian J. Theis等人发表于Nature Biotechnology 的研究成果:研究人员报道了一种深度学习策略scArches (single-cell architectural surgery),把查询数据集映射到参考图谱上。scArches不需要原始数据,仅在现有参考图谱上应用迁移学习和参数优化高效分析新数据。利用小鼠大脑、胰腺、免疫和整个有机体图谱例子,作者表明scArches能在去除批次效应的同时保留了生物状态信息。最后,使用scArches把新冠疾病映射到健康图谱上,其保留了COVID-19的疾病变异,从而能够发现疾病特定细胞状态。scArches将通过迭代构建、更新、共享和有效使用参考图谱来促进合作项目。

    02

    Scientific Reports | AutoImpute:基于自编码器的单细胞RNA测序数据的插补

    今天给大家介绍印度德里Indraprastha信息技术学院的Debarka Sengupta教授等人发表在Scientific Reports上的一篇文章 “AutoImpute: Autoencoder based imputation of single-cell RNA-seq data” 。单细胞RNA测序 (scRNA-seq) 技术的出现,使我们能够以单细胞分辨率测量数千个基因的表达水平。然而,单个细胞中起始RNA的数量不足会导致显著的“dropout”事件 (被错误判断为零的表达值),在表达矩阵中引入大量的零计数。为了解决这一问题,本文提出了一种基于自编码器的稀疏基因表达矩阵的插补方法。AutoImpute,它学习输入的scRNA-seq数据的固有分布,并相应地插补缺失值,对生物沉默基因 (真实表达的零值) 进行最小的修改。在真实的scRNA-seq数据集上进行测试时,AutoImpute在基于下采样数据的表达恢复、细胞聚类精度、方差稳定和细胞类型可分离性方面表现出竞争性。

    02

    Nature Methods | 深度学习架构Enformer提高基因表达的预测准确性

    本文介绍Žiga Avsec教授团队与Calico的团队共同发表在NATURE MATHOD的工作:作者开发了一种基于Transformers的神经网络架构Enformer,这个深度学习架构能够整合来自基因组中远程交互(高达100 kb远)的信息,大大提高了从 DNA 序列预测基因表达的准确性。由于Enformer在预测变异对基因表达的影响方面较之前的模型来说更为准确,所以可以用于解释来自全基因组关联研究的疾病相关变异。此外,Enformer还学会了从DNA序列直接预测增强子-启动子的相互作用,比起先前直接输入实验数据预测结果的方法有了长足的进步。该模型能促进对基因调控结构的理解,并促进诊断遗传起源疾病的工具的开发。

    01

    Nat. Mach. Intell. | 基于对比学习的方法可快速映射到数百万规模的多模态单细胞图谱

    本文介绍由华大基因的汪建和牟峰共同通讯发表在 Nature Machine Intelligence 的研究成果:单细胞数据集规模的不断扩大,对解决扩展的规模、扩展的模态和批次效应等问题带来了计算挑战。最近提出的基因深度学习的方法,是通过推导非线性细胞嵌入来解决这些问题。对此,作者提出了基于对比学习的方法Concerto,它利用自监督的蒸馏框架来模拟多模态单细胞图谱。只需将每个细胞与其他细胞区分开来,Concerto 就可以适用于各种下游任务,如细胞类型分类、数据集成、参考映射。与当前的主流软件包不同,Concerto 的对比设置支持对所有基因进行操作以保留生物变异,它还可以灵活地推广到多组学中以获得统一的细胞表示。在模拟数据集和真实数据集上进行基准测试,实验结果表明,Concerto 的性能远优于其他方法。并且,Concerto 概括了不同的免疫反应,还发现了 COVID-19 患者的疾病特异性细胞状态。总体而言,Concerto 将通过迭代构建单细胞参考图谱并快速映射新的数据集来传输相关的细胞注释,从而促进生物医学研究。

    02

    Nature Methods | 针对罕见病的机器学习方法

    今天为大家介绍的是来自Casey Greene团队的一篇综述论文。高通量分析方法(如基因组学或成像)加速了基础研究,并使对患者样本的深度分子特征化成为例行程序。这些方法提供了关于参与疾病表型的基因、分子途径和细胞类型的丰富信息。机器学习(ML)可以成为从高维数据集中提取与疾病相关模式的有用工具。然而,根据生物学问题的复杂性,机器学习通常需要许多样本来识别重复出现且具有生物学意义的模式。罕见病在临床案例中天然受限,导致可供研究的样本较少。作者概述了在罕见病中使用机器学习处理小样本集的挑战和新兴解决方案。罕见病的机器学习方法的进展可能对其他具有高维数据但样本较少的应用有所启发。作者建议方法研究社区优先发展罕见病研究的机器学习技术。

    01

    Nature Communications | 一种适用于单细胞RNA测序数据的准确可靠的插补方法

    今天给大家介绍美国加利福尼亚大学Jingyi Jessica Li教授等人发表在Nature Communications上的一篇文章 “An accurate and robust imputation method scImpute for single-cell RNA-seq data” 。新兴的单细胞RNA测序 (scRNA-seq) 技术能够在单细胞水平研究转录组学情况。但是ScRNA-seq数据分析由于过多的零计数而变得复杂,也就是所谓的“dropout”事件,这是由于单个细胞内测序的mRNA量过少。 本文提出了scImpute,一种统计方法,可以准确而可靠地估算出scRNA-seq数据中的“dropout”。 scImpute自动识别可能的“dropout”,并且仅对这些值执行插补,而不会对其余数据引入新的偏差。scImpute还可以检测离群细胞并将其排除在插补之外。根据在模拟的和真实的人类和小鼠scRNA-seq数据中进行评估,表明scImpute是一种有效的工具,可识别可能的“dropout”,增强细胞亚群的聚集,提高差异表达分析的准确性,并有助于基因表达动力学的研究。

    03

    佛罗里达州2021年春假:用Wolfram语言根据2月COVID-19数据预测3月变化

    人们普遍认为,在佛罗里达州度过2020年春假的学生和其他人帮助COVID-19在美国和其他地方广泛传播。2021年的情况在几个方面完全不同。首先,这种疾病已经在美国出现了一年多,大约30%的人口在之前的曝光中拥有抗体。另外,现在有几种疫苗在使用,在编写本报告时,有近20%的人至少接受过一次疫苗接种。(由于这两个群体有重叠,所以相信总数约占总人口的45%)。我们现在知道,16岁以下的儿童不会大量感染该病,不是该病传播的主要媒介。社会上的疏导行为都在不同程度的使用,目前全国各地的感染人数都在下降。据信,这是由于免疫力的提高和非药物干预措施(NPIs),如社交距离和口罩的使用。

    01

    One-Shot Unsupervised Cross Domain Translation

    给出一个来自领域A的单一图像x和一组来自领域B的图像,我们的任务是生成x在B中的类似物。我们认为,这项任务可能是一项关键的人工智能能力,它强调了认知代理在这个世界上的行动能力,并提出了经验证据,表明现有的无监督领域翻译方法在这项任务上失败。我们的方法遵循一个两步过程。首先,为领域B训练一个变异自动编码器。然后,给定新的样本x,我们通过调整接近图像的层来创建A域的变异自动编码器,以便直接适应x,而只间接适应其他层。我们的实验表明,当对一个样本x进行训练时,新方法和现有的领域转移方法一样好,当这些方法享受来自领域A的大量训练样本时。我们的代码可在https://github.com/sagiebenaim/OneShotTranslation 公开。

    02
    领券