在分布式环境中使用Estimator API在Tensorboard中显示运行时统计信息,可以通过以下步骤实现:
import tensorflow as tf
from tensorflow.estimator import Estimator
from tensorflow.estimator.inputs import numpy_input_fn
from tensorflow.python.training import device_setter
class MyEstimator(Estimator):
def __init__(self, model_dir=None, config=None, params=None):
super(MyEstimator, self).__init__(model_dir=model_dir, config=config, params=params)
def model_fn(self, features, labels, mode, params):
# 定义模型的结构和计算图
...
# 定义损失函数和优化器
...
# 定义评估指标
...
# 返回EstimatorSpec对象
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops)
config = tf.estimator.RunConfig(
model_dir=model_dir,
save_summary_steps=100,
save_checkpoints_steps=1000,
session_config=tf.ConfigProto(allow_soft_placement=True),
train_distribute=tf.contrib.distribute.ParameterServerStrategy(),
eval_distribute=tf.contrib.distribute.MirroredStrategy()
)
estimator = MyEstimator(model_dir=model_dir, config=config, params=params)
train_spec = tf.estimator.TrainSpec(input_fn=train_input_fn, max_steps=num_train_steps)
eval_spec = tf.estimator.EvalSpec(input_fn=eval_input_fn, steps=num_eval_steps)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
summary_hook = tf.estimator.SummarySaverHook(
save_steps=100,
output_dir=model_dir,
summary_op=tf.summary.merge_all()
)
logging_hook = tf.train.LoggingTensorHook(
tensors={"loss": loss, "accuracy": accuracy},
every_n_iter=100
)
estimator.train(
input_fn=train_input_fn,
steps=num_train_steps,
hooks=[summary_hook, logging_hook]
)
tensorboard --logdir=model_dir
以上是在分布式环境中使用Estimator API在Tensorboard中显示运行时统计信息的步骤。在实际应用中,可以根据具体需求进行参数调整和功能扩展。
领取专属 10元无门槛券
手把手带您无忧上云