首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

TensorFlow 分布式之论文篇 Implementation of Control Flow in TensorFlow

解释这些数据流图如何由 TensorFlow runtime 执行,包括在一组混合设备(如CPU、GPU和TPU)上的分布式执行方式。 描述如何对控制流结构进行自动求导。 本文图均来自原始论文。...我们接下来看看条件表达式和 while 循环如何在 Tensorflow 内部实现。 3.1 条件表达式 下面是构建条件表达式 cond(pred, fn1, fn2) 数据流图的高级伪代码。...在 true/false 分支中,只使用 Switch 操作的真/假输出。由于 add 的输入来自 Switch 操作的 true 分支输出,所以 add 操作只在 x<y 为真时执行。...图 14 计算逻辑 为了在反向传播循环中重用前向传播计算出来的数值,我们在构建反向传播 while 循环的过程中,自动检测反向传播中需要的前向值。...保存在一个堆栈中,所以我们会在 backprop 中重使它们。这对于在内存有限的设备(如GPU)上进行训练是一个限制。

10.6K10

TensorFlow 分布式之论文篇 TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Syst

2.3 变量(Variables) 在大多数计算中,一个图会被执行多次,而大多数张量在图的单次执行之后都不会存在。...然而,有一些张量是在计算图的执行过程之中始终存在的,位置也是固定的,其不能正常流动但是可以更新,比如模型的参数,这就引出了变量这个概念。...这确保了所需张量的数据在"源设备→ 目标设备对"之间只传输一次,并且目标设备上张量的内存只分配一次,而不是多次(例如,参见上图中的节点 b 和 c)。...因为变量(Variable)节点指的是在图的执行过程中持续存在的张量,所以我们支持设置一致性检查点,以此来在重新启动时恢复这些状态。具体来说,每个变量节点都连接到一个 Save 节点。...高层级的编程结构,如 if-conditionals 和 while-loops 则可以使用这些控制流操作符来轻松地编译成数据流计算图。

3.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pytorch说明

    优化算法: 如梯度下降(及其变体,如SGD、Adam、RMSprop等),用于在训练过程中更新模型的参数。 批量处理: 将数据分成小批量进行训练,可以提高内存效率并有助于提高模型的泛化能力。...重用缓冲区:在多进程中,应重用通过队列传递的张量,以避免不必要的内存复制。 异步多进程训练:可以使用torch.multiprocessing进行异步训练,参数可以共享或定期同步。...注意事项: 使用if __name__ == '__main__':来保护代码,以确保它只在主进程中执行,而不是在每个子进程中执行。...兼容性:参数字典可以在不同的模型架构或不同的代码库中重用。          缺点: 需要重新实例化模型:在使用模型参数之前,需要先实例化模型的架构。...如果模型的构造函数或参数设置较为复杂,这可能会增加一些额外的工作。 状态丢失:除了模型参数之外的其他状态(如训练轮次、优化器状态等)不会保存。如果需要这些额外的状态信息,需要单独处理。

    6510

    「人工智能研学社· ML系统与架构小组」第一期:如何在单块GPU上训练超大型深度学习模型

    而工作区是 cuDNN 库函数所使用的临时变量/矩阵的一个缓冲区。对于一些 cuDNN 函数,用户需要将缓冲区作为函数参数传给 GPU 内核函数。一旦函数返回,该缓冲区将被释放。 ?...这一想法是:如果 GPU 内存中的大部分数据出现空置,为什么不把它们保存在更便宜的 CPU 内存上呢?下图更清晰地展现了这一想法。 ? 左侧部分所示的间隙表明特征图如何在内存之中被空置。...在后面的整个讨论中我们都将会看到有关时间空间的这一权衡。 优化策略:在前向过程中卸载,在后向过程中预取 你应该已经知道 vDNN 是如何在正向过程中优化内存分配的。...当 vDNN 选择卸载特征图的一个张量时,vDNN 的内存管理器流(memory manager stream of vDNN)将在主机上分配一个页锁定的内存区域,并且通过 PCIe 发出一个非阻塞传输...这些特征图张量在正向过程中为只读的,因此这个传输过程可以在计算中被安全地覆盖。当依赖于其传输和计算都完成后,相关的张量可以被释放。只有当前层的卸载完成时,才能进行下一层的处理。

    96190

    ShuffleNetV2:高效网络的4条实用准则

    如内存访问成本(MAC, memory access cost),它在如组卷积中占大量运行时间,导致MAC是瓶颈。...如以前会采用张量分解来加速矩阵乘法,但张量分解在GPU上运行会慢很多。作者调查发现最近的CUDNN库中有专门为 ? 卷积进行了优化,也就是说张量分解后的运行速度有可能慢与优化库中的张量乘法。...文中采用控制变量法实验验证了这准则。...ShuffleNet-V2也是符合这样的观点, 特征重用信息随着两个模块间的距离呈指数衰减。即 ? 层的feature maps中,含有 ? 层feature maps数为 ?...毕竟基于优秀网络上的改进,很多是增加一些Element-wise操作,从而获得准确率的提升。但ShuffleNetV2告诉了我们,Element-wise操作可以简化(如relu的移位)。

    1.3K20

    AI框架跟计算图什么关系?PyTorch如何表达计算图?

    在 AI 框架中数据流图表示对数据进行处理的单元,接收一定的数据输入,然后对其进行处理,再进行系统输出。...有些物理量,只具有数值大小,而没有方向,部分有正负之分,物理学上指有大小而没有方向的量(跟「矢量」相区别)。物理学中,标量(或作纯量)指在坐标变换下保持不变的物理量。...理论数学中向量的定义为任何在稱為向量空间的代數結構中的元素。...节点表示数据,如向量、矩阵、张量;边表示具体执行的运算,如加、减、乘、除和卷积等。...在这里的计算图其实忽略了2个细节,特殊的操作:如:程序代码中的 For/While 等构建控制流;和特殊的边:如:控制边表示节点间依赖。

    86630

    【AI系统】计算图原理

    在 AI 框架中数据流图表示对数据进行处理的单元,接收一定的数据输入,然后对其进行处理,再进行系统输出。...有些物理量,只具有数值大小,而没有方向,部分有正负之分,物理学上指有大小而没有方向的量(跟「矢量」相区别)。物理学中,标量(或作纯量)指在坐标变换下保持不变的物理量。...理论数学中向量的定义为任何在稱為向量空间的代數結構中的元素。...节点表示数据,如向量、矩阵、张量;边表示具体执行的运算,如加、减、乘、除和卷积等。...在这里的计算图其实忽略了 2 个细节,特殊的操作:如:程序代码中的 For/While 等构建控制流;和特殊的边:如:控制边表示节点间依赖。

    12110

    TensorFlow入门:一篇机器学习教程

    在这个TensorFlow教程中,您将学习如何在TensorFlow中使用简单而强大的机器学习方法,以及如何使用它的一些辅助库来调试,可视化和调整使用它创建的模型。...数据流图 在TensorFlow中,使用数据流图来描述计算。图的每个节点表示数学运算的实例(如加法,除法或乘法),每个边是执行操作的多维数据集(张量)。 ?...数学与张量流 张量是TensorFlow中的基本数据结构,它们表示数据流图中的连接边。 张量只是标识一个多维数组或列表。张量结构可以用三个参数来标识:等级,形状和类型。 等级:标识张量的维数。...主要区别在于NumPy数组还包含一些其他属性,如尺寸,形状和类型。...数据集包含31个变量:时间,V1,...,V28,数量和类别。在这个代码示例中,我们只使用V1,...,V28和Class。类别标签具有1的欺诈性交易和不具有0的交易。

    4.1K10

    OSDI 2022 Roller 论文解读

    如Figure5(a)所示,在Roller中,张量内存以缓存对齐的方式分配。因此,rTile可以避免浪费任何的内存读取,因为它的 shape 是和内存事务长度对齐的。...给定 rTile 和现代加速器的内存分层结构,张量计算可以自然地被看成数据流处理管道。...通过利用0x3.1节中定义的数据重用分数,单核rProgram构建算法从初始化rTile开始,并逐渐将其扩大到rTile中收益最大的轴(也即具有最大重用分数的)。...这里可以通过Rammer编译器的同时调度一些小Kernel来解决。然后另外一种方法是对于每个rProgram,Roller尝试沿着具有最小数据重用分数的轴收缩rTiles,来实现足够的并行度。...未来,我们计划实现汇编级代码生成,以缓解高级设备编译器中的隐藏问题。 还有一些NIVIDIA GPU/AMD ROCm/Grphcore IPUs具体硬件上的一些实现细节,感兴趣的可以自己看下论文。

    1.4K10

    文末福利|一文上手TensorFlow2.0(一)

    通过设置运算操作的属性可以让运算操作支持不同的张量(tensor)元素类型,例如让向量加法操作运算只接受浮点类型的张量。...表2-2 TensorFlow中张量的形状示例 TensorFlow中有一些特殊的张量,以下是一些主要的特殊张量: tf.Variable(变量,TensorFlow中的张量一般都不会被持久化保存,参与一次运算操作后就会被丢弃了...变量(variable)是一种特殊的运算操作,它可以将一些需要持久化保存的张量存储在内存或显存中,并会返回一个可以对该变量所引用的张量进行一系列特定操作的句柄,例如Assign和AssignAdd(等同于...TensorFlow 1.x中有各种机制旨在帮助用户再次找到他们所创建的变量,而在2.0中则取消了所有这些机制,支持默认的机制:跟踪变量。当我们不再用到创建的某个变量时,该变量就会被自动回收。 4....为了保留静态图的一些优势,例如性能优化以及重用模块化的TensorFlow函数等,在TensorFlow2.0中,我们可以使用“tf.function()”来修饰python函数以将其标记为即时(Just-In-Time

    1.3K31

    分布式训练 Parameter Sharding 之 Google Weight Sharding

    除了高效通信原语的通用挑战外,另一个复杂问题是当今的优化器通常对于每个权重变量还需要几个辅助变量,如移动平均值(moving average )和动量(momentum),每个辅助变量的大小与权重本身相同...辅助变量的其他用途。虽然辅助变量仅在权重更新时用到,但现实的模型通常包括一些自定义逻辑,例如获取当前训练进度的摘要,该摘要可能使用变量的完整状态。...例如,一些优化器使用权重范数或均方根,这涉及到reduce运算符。我们将讨论如何在分片数据上运行非元素级别计算的解决方案。 大型拓扑中的通信。...使用第二种方法,可以在bfloat16中执行全权重的all-gather,如图7所示,这大大减少了内存访问和通信量。这种精度优化是通过基于数据流的精度传播过程自动完成的。...4.2.2 内存节省 通过上述转换,权重和辅助变量的生存范围得到了缩小。特别是对于辅助变量,只需要在训练循环之外使用其完整数据缓存区。因此,可以重用它们的缓冲区来存储向前和向后过程中的激活和梯度。

    1K20

    Keras之父出品:Twitter超千赞TF 2.0 + Keras速成课程

    第一部分主要讲TensorFlow一些基础,比如张量、变量、数学、梯度计算等;第二部分详细介绍了Keras API。 教程放在Google Colab上,可以一边看介绍一边运行代码。...第一部分:TensorFlow基础 这部分主要介绍了张量、随机常量张量、变量、数学计算、使用GradientTape计算梯度、线性回归的实例,以及使用tf.function来加速运行。...变量 变量是用于存储可变状态(例如神经网络的权重)的特殊张量。可以使用一些初始值创建变量。 ?...比如: call方法中的training参数 一些层,尤其是BatchNormalization层和Dropout层,在训练和推理期间具有不同的行为。...优化器类以及一个端到端的training循环 通常,你不必像在最初的线性回归示例中那样手动定义在梯度下降过程中如何更新变量。

    1K00

    Keras之父出品:Twitter超千赞TF 2.0 + Keras速成课程

    第一部分主要讲TensorFlow一些基础,比如张量、变量、数学、梯度计算等;第二部分详细介绍了Keras API。 教程放在Google Colab上,可以一边看介绍一边运行代码。...第一部分:TensorFlow基础 这部分主要介绍了张量、随机常量张量、变量、数学计算、使用GradientTape计算梯度、线性回归的实例,以及使用tf.function来加速运行。...变量 变量是用于存储可变状态(例如神经网络的权重)的特殊张量。可以使用一些初始值创建变量。 ?...比如: call方法中的training参数 一些层,尤其是BatchNormalization层和Dropout层,在训练和推理期间具有不同的行为。...优化器类以及一个端到端的training循环 通常,你不必像在最初的线性回归示例中那样手动定义在梯度下降过程中如何更新变量。

    1.4K30

    tf.variable_scope

    ,我们在获取非重用范围中的现有变量时引发异常。...1]) v1 = tf.get_variable("v", [1]) # Raises ValueError("... v already exists ...").类似地,当尝试获取在重用模式中不存在的变量时...因此,如果希望从主线程的范围中保留名称前缀,应该捕获主线程的范围并在每个线程中重新输入它,如:main_thread_scope = variable_scope.get_variable_scope(...dtype: 在此范围中创建的变量的类型(默认为传递的范围中的类型,或从父范围继承的类型)。use_resource: 如果为False,则所有变量都是常规变量。...constraint: 优化器更新后应用于变量的可选投影函数(例如,用于为层权重实现规范约束或值约束)。函数必须将表示变量值的未投影张量作为输入,并返回投影值的张量(其形状必须相同)。

    2K20

    不再让CPU和总线拖后腿:Exafunction让GPU跑的更快!

    首先,用户必须从会话中创建一个 tensorflow::CallableOptions 的实例,以指定哪些张量被传入和传出 GPU 内存而不是 CPU 内存。...此外,有必要指定内存将从哪个 GPU 中输入和获取。在这个例子中,为了简单起见,本文将把所有的输入和输出的张量(Tensor)放在第一个 GPU 上。...callable_options, &callable)); // Before the session is destroyed: // session->ReleaseCallable(callable); 接下来就可以创建一些输入张量了...在这个例子中,本文将只使用 TensorFlow 内置的 GPU 分配器,但其实也是可以通过 tensorflow::TensorBuffer 接口将外部张量传入外部 GPU 缓冲区。...TensorFlow CUDA stream 的输入必须与 TensorFlow 的流同步,而输出的使用对象必须在访问内存之前与 TensorFlow 的流同步。

    1.1K40

    边缘计算笔记(二): 从tensorflow生成tensorRT引擎的方法

    这个脚本可能不适用于所有张量流模型,但适用于那些记录的 在github项目中的模型。接下来,我们将讨论如何在jetson上使用tensorRT优化和执行tensorflow模型。...但在深入了解Forzen grah的细节以及如何创建它之前,我们将首先讨论如何在Tensorflow中序列化gragh。 ?...GraphDef类完整的定义了一个神经网络的结构,但是它不包含网络中的变量的值。 ?...具体的某个GraphDef所定义的网络中的变量的值,是保存在运行中的TensorFlow任务的内存中的,或者保存在磁盘上的checkpoint文件里。...我们导出含有网络图定义的记录文件,然后启动TensorFlow的服务器端 ,然后指定导出的记录文件,然后就可以从浏览器中打开TensorBoard了,从而能可视化的观察一些信息。

    4.1K40

    在pytorch中停止梯度流的若干办法,避免不必要模块的参数更新

    我们在深度模型训练过程中,很可能存在多个loss,比如GAN对抗生成网络,存在G_loss和D_loss,通常来说,我们通过D_loss只希望更新判别器(Discriminator),而生成网络(Generator...)并不需要,也不能被更新;生成网络只在通过G_loss学习的情况下,才能被更新。...一般来说,截断梯度流可以有几种思路:1、停止计算某个模块的梯度,在优化过程中这个模块还是会被考虑更新,然而因为梯度已经被截断了,因此不能被更新。...停止计算某个模块的梯度在本大类方法中,主要涉及到了tensor.detach()和requires_grad的设置,这两种都无非是对某些模块,某些节点变量设置了是否需要梯度的选项。...设置requires_gradtensor.detach()是截断梯度流的一个好办法,但是在设置了detach()的张量之前的所有模块,梯度流都不能回流了(不包括这个张量本身,这个张量已经脱离原先的计算图了

    7.7K41

    历时6个月,Hugging Face开源LLM「超大规模实战手册」!200页3万字4000次训练

    如何根据这些变量,快速确定显存使用情况呢?一个简单的方法是通过实验测量。 分析显存使用情况 用PyTorch分析器,可以了解训练过程中显存的分配方式。显存利用率在训练过程中,会有很大的变化。...接下来,探讨如何在扩展训练规模的过程中,最大化计算效率,同时确保激活值、参数、梯度和优化器状态的显存需求在限制范围内。...激活值重计算 激活值重计算的基本思想是在前向传播中丢弃一些激活值,以节省显存。并通过增加一些计算量,在反向传播中动态计算这些激活值。...这些方案将一些张量移到CPU上,或将权重、梯度、优化器等张量拆分到多个GPU上。...DeepSeek的DualPipe在V3技术报告中扩展了分解方法,针对从PP维度两端传播的两个数据流交错,以进一步减少 GPU空闲时间。

    9000
    领券