首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在我的spark 2.4.7中连接和写入postgres jdbc?

在Spark 2.4.7中连接和写入PostgreSQL JDBC,你可以按照以下步骤进行操作:

  1. 首先,确保你已经安装了PostgreSQL JDBC驱动程序。你可以从PostgreSQL官方网站下载并安装适合你的驱动程序版本。
  2. 在你的Spark应用程序中,导入相关的依赖项。你需要添加Spark SQL和PostgreSQL JDBC驱动程序的依赖项。例如,在Scala中,你可以使用以下代码导入依赖项:
代码语言:txt
复制
import org.apache.spark.sql.{SparkSession, SaveMode}

// 导入PostgreSQL JDBC驱动程序
import org.postgresql.Driver
  1. 创建一个SparkSession对象。SparkSession是与Spark进行交互的入口点。你可以使用以下代码创建一个SparkSession对象:
代码语言:txt
复制
val spark = SparkSession.builder()
  .appName("Spark PostgreSQL Example")
  .config("spark.master", "local")
  .getOrCreate()
  1. 使用SparkSession对象读取PostgreSQL数据。你可以使用spark.read方法从PostgreSQL数据库中读取数据。以下是一个示例代码:
代码语言:txt
复制
val jdbcUrl = "jdbc:postgresql://localhost:5432/mydatabase"
val connectionProperties = new java.util.Properties()
connectionProperties.setProperty("user", "myuser")
connectionProperties.setProperty("password", "mypassword")

val df = spark.read
  .jdbc(jdbcUrl, "mytable", connectionProperties)

在上面的代码中,你需要将jdbcUrl替换为你的PostgreSQL数据库的URL,mydatabase替换为你的数据库名称,myusermypassword替换为你的数据库用户名和密码,mytable替换为你要读取的表名。

  1. 使用SparkSession对象将数据写入PostgreSQL。你可以使用df.write方法将数据写入PostgreSQL数据库。以下是一个示例代码:
代码语言:txt
复制
val jdbcUrl = "jdbc:postgresql://localhost:5432/mydatabase"
val connectionProperties = new java.util.Properties()
connectionProperties.setProperty("user", "myuser")
connectionProperties.setProperty("password", "mypassword")

df.write
  .mode(SaveMode.Append)
  .jdbc(jdbcUrl, "mytable", connectionProperties)

在上面的代码中,你需要将jdbcUrl替换为你的PostgreSQL数据库的URL,mydatabase替换为你的数据库名称,myusermypassword替换为你的数据库用户名和密码,mytable替换为你要写入的表名。

这样,你就可以在Spark 2.4.7中连接和写入PostgreSQL JDBC了。请注意,上述代码中的参数和配置应根据你的实际情况进行修改。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于Apache Hudi和Debezium构建CDC入湖管道

当想要对来自事务数据库(如 Postgres 或 MySQL)的数据执行分析时,通常需要通过称为更改数据捕获[4] CDC的过程将此数据引入数据仓库或数据湖等 OLAP 系统。Debezium 是一种流行的工具,它使 CDC 变得简单,其提供了一种通过读取更改日志[5]来捕获数据库中行级更改的方法,通过这种方式 Debezium 可以避免增加数据库上的 CPU 负载,并确保捕获包括删除在内的所有变更。现在 Apache Hudi[6] 提供了 Debezium 源连接器,CDC 引入数据湖比以往任何时候都更容易,因为它具有一些独特的差异化功能[7]。Hudi 可在数据湖上实现高效的更新、合并和删除事务。Hudi 独特地提供了 Merge-On-Read[8] 写入器,与使用 Spark 或 Flink 的典型数据湖写入器相比,该写入器可以显着降低摄取延迟[9]。最后,Apache Hudi 提供增量查询[10],因此在从数据库中捕获更改后可以在所有后续 ETL 管道中以增量方式处理这些更改下游。

02
  • 基于Apache Hudi的多库多表实时入湖最佳实践

    CDC(Change Data Capture)从广义上讲所有能够捕获变更数据的技术都可以称为CDC,但本篇文章中对CDC的定义限定为以非侵入的方式实时捕获数据库的变更数据。例如:通过解析MySQL数据库的Binlog日志捕获变更数据,而不是通过SQL Query源表捕获变更数据。Hudi 作为最热的数据湖技术框架之一, 用于构建具有增量数据处理管道的流式数据湖。其核心的能力包括对象存储上数据行级别的快速更新和删除,增量查询(Incremental queries,Time Travel),小文件管理和查询优化(Clustering,Compactions,Built-in metadata),ACID和并发写支持。Hudi不是一个Server,它本身不存储数据,也不是计算引擎,不提供计算能力。其数据存储在S3(也支持其它对象存储和HDFS),Hudi来决定数据以什么格式存储在S3(Parquet,Avro,…), 什么方式组织数据能让实时摄入的同时支持更新,删除,ACID等特性。Hudi通过Spark,Flink计算引擎提供数据写入, 计算能力,同时也提供与OLAP引擎集成的能力,使OLAP引擎能够查询Hudi表。从使用上看Hudi就是一个JAR包,启动Spark, Flink作业的时候带上这个JAR包即可。Amazon EMR 上的Spark,Flink,Presto ,Trino原生集成Hudi, 且EMR的Runtime在Spark,Presto引擎上相比开源有2倍以上的性能提升。在多库多表的场景下(比如:百级别库表),当我们需要将数据库(mysql,postgres,sqlserver,oracle,mongodb等)中的数据通过CDC的方式以分钟级别(1minute+)延迟写入Hudi,并以增量查询的方式构建数仓层次,对数据进行实时高效的查询分析时。我们要解决三个问题,第一,如何使用统一的代码完成百级别库表CDC数据并行写入Hudi,降低开发维护成本。第二,源端Schema变更如何同步到Hudi表。第三,使用Hudi增量查询构建数仓层次比如ODS->DWD->DWS(各层均是Hudi表),DWS层的增量聚合如何实现。本篇文章推荐的方案是: 使用Flink CDC DataStream API(非SQL)先将CDC数据写入Kafka,而不是直接通过Flink SQL写入到Hudi表,主要原因如下,第一,在多库表且Schema不同的场景下,使用SQL的方式会在源端建立多个CDC同步线程,对源端造成压力,影响同步性能。第二,没有MSK做CDC数据上下游的解耦和数据缓冲层,下游的多端消费和数据回溯比较困难。CDC数据写入到MSK后,推荐使用Spark Structured Streaming DataFrame API或者Flink StatementSet 封装多库表的写入逻辑,但如果需要源端Schema变更自动同步到Hudi表,使用Spark Structured Streaming DataFrame API实现更为简单,使用Flink则需要基于HoodieFlinkStreamer做额外的开发。Hudi增量ETL在DWS层需要数据聚合的场景的下,可以通过Flink Streaming Read将Hudi作为一个无界流,通过Flink计算引擎完成数据实时聚合计算写入到Hudi表。

    01

    Robinhood基于Apache Hudi的下一代数据湖实践

    Robinhood 的使命是使所有人的金融民主化。Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础。我们有各种数据源——OLTP 数据库、事件流和各种第 3 方数据源。需要快速、可靠、安全和以隐私为中心的数据湖摄取服务来支持各种报告、关键业务管道和仪表板。不仅在数据存储规模和查询方面,也在我们在数据湖支持的用例方面,我们从最初的数据湖版本[1]都取得了很大的进展。在这篇博客中,我们将描述如何使用各种开源工具构建基于变更数据捕获的增量摄取,以将我们核心数据集的数据新鲜延迟从 1 天减少到 15 分钟以下。我们还将描述大批量摄取模型中的局限性,以及在大规模操作增量摄取管道时学到的经验教训。

    02

    kafka系列-DirectStream

    spark读取kafka数据流提供了两种方式createDstream和createDirectStream。 两者区别如下: 1、KafkaUtils.createDstream 构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] )  使用了receivers来接收数据,利用的是Kafka高层次的消费者api,对于所有的receivers接收到的数据将会保存在Spark executors中,然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDFS上  A、创建一个receiver来对kafka进行定时拉取数据,ssc的rdd分区和kafka的topic分区不是一个概念,故如果增加特定主体分区数仅仅是增加一个receiver中消费topic的线程数,并不增加spark的并行处理数据数量  B、对于不同的group和topic可以使用多个receivers创建不同的DStream  C、如果启用了WAL,需要设置存储级别,即KafkaUtils.createStream(….,StorageLevel.MEMORY_AND_DISK_SER) 2.KafkaUtils.createDirectStream 区别Receiver接收数据,这种方式定期地从kafka的topic+partition中查询最新的偏移量,再根据偏移量范围在每个batch里面处理数据,使用的是kafka的简单消费者api  优点:  A、 简化并行,不需要多个kafka输入流,该方法将会创建和kafka分区一样的rdd个数,而且会从kafka并行读取。  B、高效,这种方式并不需要WAL,WAL模式需要对数据复制两次,第一次是被kafka复制,另一次是写到wal中

    02
    领券