Analytics Zoo是一个开源的分布式深度学习和分析框架,用于大规模数据处理和模型训练。它提供了一种简单而高效的方式来构建、训练和部署深度学习模型。
在Analytics Zoo中,可以通过以下步骤来包含目录结构:
from zoo.pipeline.api.keras.models import Sequential
from zoo.pipeline.api.keras.layers import Dense
from zoo.pipeline.api.keras.optimizers import Adam
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=100))
model.add(Dense(64, activation='relu'))
model.add(Dense(10, activation='softmax'))
model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])
data_dir = "/path/to/data"
train_dir = data_dir + "/train"
val_dir = data_dir + "/val"
test_dir = data_dir + "/test"
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=32,
class_mode='categorical')
val_generator = val_datagen.flow_from_directory(
val_dir,
target_size=(150, 150),
batch_size=32,
class_mode='categorical')
test_generator = test_datagen.flow_from_directory(
test_dir,
target_size=(150, 150),
batch_size=32,
class_mode='categorical')
model.fit_generator(
train_generator,
steps_per_epoch=2000,
epochs=50,
validation_data=val_generator,
validation_steps=800)
score = model.evaluate_generator(test_generator, steps=800)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
这是一个简单的示例,展示了如何在Analytics Zoo中包含目录结构。根据实际需求,可以根据目录结构的不同进行调整和扩展。
领取专属 10元无门槛券
手把手带您无忧上云