在Keras中对训练集进行预处理以进行VGG16微调,可以按照以下步骤进行:
from keras.applications.vgg16 import VGG16
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.optimizers import SGD
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
for layer in base_model.layers:
layer.trainable = False
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
其中,num_classes
是分类的类别数。
model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer=SGD(lr=0.001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(224, 224),
batch_size=batch_size,
class_mode='categorical')
其中,train_data_dir
是训练集数据的路径,batch_size
是批量大小。
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
其中,nb_train_samples
和nb_validation_samples
分别是训练集和验证集的样本数量。
以上是在Keras中对训练集进行预处理以进行VGG16微调的步骤。在实际应用中,可以根据具体需求进行调整和优化。
领取专属 10元无门槛券
手把手带您无忧上云