首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在Pyspark中根据另一列的值选择另一列?

在Pyspark中,可以使用条件表达式和列选择操作来根据另一列的值选择另一列。以下是一个完善且全面的答案:

在Pyspark中,可以使用whenotherwise函数来实现根据另一列的值选择另一列的操作。具体步骤如下:

  1. 导入必要的模块和函数:
代码语言:txt
复制
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, when
  1. 创建SparkSession对象:
代码语言:txt
复制
spark = SparkSession.builder.getOrCreate()
  1. 创建一个示例数据集:
代码语言:txt
复制
data = [("Alice", 25, "F"), ("Bob", 30, "M"), ("Charlie", 35, "M")]
df = spark.createDataFrame(data, ["name", "age", "gender"])
df.show()

输出结果:

代码语言:txt
复制
+-------+---+------+
|   name|age|gender|
+-------+---+------+
|  Alice| 25|     F|
|    Bob| 30|     M|
|Charlie| 35|     M|
+-------+---+------+
  1. 使用条件表达式和列选择操作来选择另一列:
代码语言:txt
复制
df.select("name", "age", "gender", when(col("gender") == "M", col("age")).otherwise(None).alias("selected_age")).show()

输出结果:

代码语言:txt
复制
+-------+---+------+------------+
|   name|age|gender|selected_age|
+-------+---+------+------------+
|  Alice| 25|     F|        null|
|    Bob| 30|     M|          30|
|Charlie| 35|     M|          35|
+-------+---+------+------------+

在上述代码中,我们使用when函数来判断gender列的值是否为"M",如果是,则选择age列的值,否则选择None。最后使用alias函数给新列命名为"selected_age"。

这样,我们就根据另一列的值选择了另一列,并将结果显示出来。

推荐的腾讯云相关产品:腾讯云分析型数据库TDSQL、腾讯云数据仓库CDW、腾讯云弹性MapReduceEMR、腾讯云云服务器CVM等。你可以通过访问腾讯云官方网站获取更多关于这些产品的详细信息和介绍。

腾讯云产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Excel公式技巧71:查找一中有多少个出现在另一

学习Excel技术,关注微信公众号: excelperfect 有时候,我们想要知道某中有多少个同时又出现在另一,例如下图1所示,B中有一系列D中有一系列,哪些既出现有B又出现在...因为数据较少,不难看出,在B仅有2个出现在D,即“完美Excel”和“Office”。 ?...MATCH(B3:B13,B3:B13,0) 查找单元格区域B3:B13每个单元格在该区域首次出现位置,得到数组: {1;2;3;1;5;6;2;3;5;1;2} 公式: ROW(B3:B13...TRUE;TRUE;FALSE;TRUE;TRUE;FALSE;FALSE;FALSE;FALSE;FALSE} 其中TRUE表明该单元格首次在该区域出现,FALSE表明该单元格已经在前面出现过...传递给COUNT函数统计数组数字个数: COUNT({1;5;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A;#N/A}) 得到结果: 2 即B中有两个D中出现

3.1K20
  • 合并excel,为空单元格被另一替换?

    一、前言 前几天在Python铂金交流群【逆光】问了一个Pandas数据处理问题,问题如下:请问 合并excel,为空单元格被另一替换。...【逆光】:好,我去看看这个函数谢谢 【逆光】:我列表不挨着, a b互补,我需要变成c (c 包含 a 和 b) 【Siris】:最笨方法遍历判断呗 【逆光】:太慢了,我数据有点多。...【Siris】:你是说c是a和b内容拼接起来是么 【逆光】:是 【Siris】:那你其实可以直接在excel里用CONCAT函数。 【不上班能干啥!】:只在excel里操作,速度基本没啥改变。...我不写,就报这个错 【瑜亮老师】:有很多种写法,最简单思路是分成3行代码。就是你要给哪一全部赋值为相同,就写df['列名'] = ''。不要加方括号,如果是数字,就不要加引号。...【瑜亮老师】:3一起就是df.loc[:, ['1', '', '3'']] = ["", 0, 0] 【不上班能干啥!】:起始这行没有报错,只是警告,因为你这样操作会影响赋值前变量。

    10710

    问与答112:如何查找一内容是否在另一并将找到字符添加颜色?

    引言:本文整理自vbaexpress.com论坛,有兴趣朋友可以研阅。...Q:我在D单元格存放着一些数据,每个单元格多个数据使用换行分开,E是对D数据相应描述,我需要在E单元格查找是否存在D数据,并将找到数据标上颜色,如下图1所示。 ?...A:实现上图1所示效果VBA代码如下: Sub ColorText() Dim ws As Worksheet Dim rDiseases As Range Dim rCell...End If Loop Next iDisease Next rCell End Sub 代码中使用Split函数以回车符来拆分单元格数据并存放到数组...,然后遍历该数组,在E对应单元格中使用InStr函数来查找是否出现了该数组,如果出现则对该添加颜色。

    7.2K30

    Excel公式练习38: 求一数字剔除掉另一数字后剩下数字

    本次练习是:如下图1所示,在单元格区域A2:A12和B2:B12给定两数字,要在C从单元格C2开始生成一数字。规则如下: 1. B数字数量要小于等于A数字数量。 2....B任意数字都可以在A中找到。 3. 在A或B已存放数字单元格之间不能有任何空单元格。 4. 在C数字是从A数字移除B数字在A第一次出现数字后剩下数字。 5....换句话说,B和C数字合起来就是A数字。 ? 图1 在单元格D1数字等于A数字数量减去B数字数量后,也就是C数字数量。...公式思路就是构造一个数组,能够实现在List1和List2之间执行MATCH函数查找时,C数值就是找不到,返回FALSE。 然而,实现起来并不是想像那么简单。...我们必须首先确保生成是唯一,并且仍然可以通过某种方式与原始相对应,从而提取出原始。 公式List1、List2、Arry1和Arry2是定义四个名称。

    3.3K20

    Excel应用实践16:搜索工作表指定范围数据并将其复制到另一个工作表

    学习Excel技术,关注微信公众号: excelperfect 这里应用场景如下: “在工作表Sheet1存储着数据,现在想要在该工作表第O至第T搜索指定数据,如果发现,则将该数据所在行复制到工作表...Sheet2。...用户在一个对话框输入要搜索数据,然后自动将满足前面条件所有行复制到工作表Sheet2。” 首先,使用用户窗体设计输入对话框,如下图1所示。 ?...("O2:T"& lngRow) '查找数据文本 '由用户在文本框输入 FindWhat = "*" &Me.txtSearch.Text & "*..." '调用FindAll函数查找数据 '存储满足条件所有单元格 Set rngFoundCells =FindAll(SearchRange:=rngSearch

    6K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    Row元素所有列名:** **选择或多:select** **重载select方法:** **还可以用where按条件选择** --- 1.3 排序 --- --- 1.4 抽样 --- --...functions **另一种方式通过另一个已有变量:** **修改原有df[“xx”]所有:** **修改类型(类型投射):** 修改列名 --- 2.3 过滤数据--- 3、-------...另一种方式通过另一个已有变量: result3 = result3.withColumn('label', df.result*0 ) 修改原有df[“xx”]所有: df = df.withColumn...,然后生成多行,这时可以使用explode方法   下面代码根据c3字段空格将字段内容进行分割,分割内容存储在新字段c3_,如下所示 jdbcDF.explode( "c3" , "c3...,一为分组组名,另一为行总数 max(*cols) —— 计算每组中一或多最大 mean(*cols) —— 计算每组中一或多平均值 min(*cols) ——

    30.4K10

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除 5、排序 6、处理缺失 7、分组统计 8、join操作 9、空判断 10、离群点 11、去重 12、 生成新 13、行最大最小...# 1.选择 # 选择几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符才能使用 color_df.select('length...方法 #如果a中值为空,就用b填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2数据填充df1缺失 df1.combine_first...({'LastName':'--', 'Dob':'unknown'}).show() 9、空判断 有两种空判断,一种是数值类型是nan,另一种是普通None # 类似 pandas.isnull...']) 12、 生成新 # 数据转换,可以理解成运算 # 注意自定义函数调用方式 # 0.创建udf自定义函数,对于简单lambda函数不需要指定返回类型 from pyspark.sql.functions

    10.5K10

    使用CDSW和运营数据库构建ML应用3:生产ML模型

    在最后一部分,我们将讨论一个演示应用程序,该应用程序使用PySpark.ML根据Cloudera运营数据库(由Apache HBase驱动)和Apache HDFS存储训练数据来建立分类模型。...在HBase和HDFS训练数据 这是训练数据基本概述: 您所见,共有7,其中5是传感器读数(温度,湿度比,湿度,CO2,光)。...还有一个“日期”,但是此演示模型不使用此列,但是任何时间戳都将有助于训练一个模型,该模型应根据一天时间考虑季节变化或AC / HS峰值。...在此演示,此训练数据一半存储在HDFS另一半存储在HBase表。该应用程序首先将HDFS数据加载到PySpark DataFrame,然后将其与其余训练数据一起插入到HBase表。...其次,添加一个功能,当用户确认占用预测正确时,将其添加到训练数据。 为了模拟实时流数据,我每5秒在Javascript随机生成一个传感器

    2.8K10

    PySpark UD(A)F 高效使用

    需要注意一件重要事情是,除了基于编程数据处理功能之外,Spark还有两个显著特性。一种是,Spark附带了SQL作为定义查询替代方式,另一种是用于机器学习Spark MLlib。...举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔is_sold,想要过滤带有sold产品行。...在UDF,将这些转换回它们原始类型,并进行实际工作。如果想返回具有复杂类型,只需反过来做所有事情。...不同之处在于,对于实际UDF,需要知道要将哪些转换为复杂类型,因为希望避免探测每个包含字符串。在向JSON转换,如前所述添加root节点。...42 键 x 添加到 maps 字典

    19.6K31

    PySpark SQL——SQL和pd.DataFrame结合体

    groupby/groupBy:分组聚合 分组聚合是数据分析中最为常用基础操作,其基本用法也与SQLgroup by关键字完全类似,既可直接根据某一字段执行聚合统计,也可根据某一简单运算结果进行统计...SQL用法也是完全一致,都是根据指定字段或字段简单运算执行排序,sort实现功能与orderby功能一致。...以上主要是类比SQL关键字用法介绍了DataFrame部分主要操作,而学习DataFrame另一个主要参照物就是pandas.DataFrame,例如以下操作: dropna:删除空行 实际上也可以接收指定列名或阈值...drop_duplicates函数功能完全一致 fillna:空填充 与pandasfillna功能一致,根据特定规则对空进行填充,也可接收字典参数对各指定不同填充 fill:广义填充 drop...),第二个参数则为该取值,可以是常数也可以是根据已有进行某种运算得到,返回是一个调整了相应列后新DataFrame # 根据age创建一个名为ageNew df.withColumn('

    10K20

    如何使用Apache Spark MLlib预测电信客户流失

    完整源代码和输出可在IPython笔记本中找到。该仓库还包含一个脚本,显示如何在CDH群集上启动具有所需依赖关系IPython笔记本。...其余字段将进行公平竞赛,来产生独立变量,这些变量与模型结合使用用来生成预测。 要将这些数据加载到Spark DataFrame,我们只需告诉Spark每个字段类型。...在我们例子,我们会将输入数据中用字符串表示类型变量,intl_plan转化为数字,并index(索引)它们。 我们将会选择一个子集。...一个随机预测器会将一半客户标记为流失,另一半客户标记为非流失,将会产生一条直对角线ROC曲线。这条线将单位正方形切割成两个大小相等三角形,因此曲线下方面积为0.5。...我们只用我们测试集对模型进行评估,以避免模型评估指标(AUROC)过于乐观,以及帮助我​​们避免过度拟合。

    4K10

    Spark Extracting,transforming,selecting features

    ,比如LDA; 在Fitting过程,CountVectorizer会选择语料库中词频最大词汇量,一个可选参数minDF通过指定文档中词在语料库最小出现次数来影响Fitting过程,另一个可选二类切换参数控制输出向量...N真值序列转换到另一个在频域长度为N真值序列,DCT类提供了这一功能; from pyspark.ml.feature import DCT from pyspark.ml.linalg import...参数,如果用户选择保留,那么这些NaN会被放入一个特殊额外增加; 算法:每个桶范围选择是通过近似算法,近似精度可以通过参数relativeError控制,如果设置为0,那么就会计算准确分位数...输出新向量,新向量元素是通过这些索引指定选择,有两种指定索引方式: 通过setIndices()方法以整数方式指定下标; 通过setNames()方法以字符串方式指定索引,这要求向量列有一...:返回卡方测试多少比例Top特征; fpr:返回所有p小于阈值特征,它控制选择false positive比例; fdr:返回false descovery rate小于阈值特征; fwe

    21.8K41

    独家 | 一文读懂PySpark数据框(附实例)

    人们往往会在一些流行数据分析语言中用到它,Python、Scala、以及R。 那么,为什么每个人都经常用到它呢?让我们通过PySpark数据框教程来看看原因。...大卸八块 数据框应用编程接口(API)支持对数据“大卸八块”方法,包括通过名字或位置“查询”行、和单元格,过滤行,等等。统计数据通常都是很凌乱复杂同时又有很多缺失或错误和超出常规范围数据。...数据框结构 来看一下结构,亦即这个数据框对象数据结构,我们将用到printSchema方法。这个方法将返回给我们这个数据框对象不同信息,包括每数据类型和其可为空限制条件。 3....列名和个数(行和) 当我们想看一下这个数据框对象各列名、行数或数时,我们用以下方法: 4. 描述指定 如果我们要看一下数据框某指定概要信息,我们会用describe方法。...查询不重复组合 7. 过滤数据 为了过滤数据,根据指定条件,我们使用filter命令。 这里我们条件是Match ID等于1096,同时我们还要计算有多少记录或行被筛选出来。 8.

    6K10

    大数据开发!Pandas转spark无痛指南!⛵

    可以指定要分区:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行...parquet 更改 CSV 来读取和写入不同格式,例如 parquet 格式 数据选择 - Pandas在 Pandas 中选择某些是这样完成: columns_subset = ['employee...条件选择 PandasPandas 根据特定条件过滤数据/选择数据语法如下:# First methodflt = (df['salary'] >= 90_000) & (df['state'] =...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 每一进行统计计算方法,可以轻松对下列统计进行统计计算:元素计数列元素平均值最大最小标准差三个分位数...我们经常要进行数据变换,最常见是要对「字段/」应用特定转换,在Pandas我们可以轻松基于apply函数完成,但在PySpark 我们可以使用udf(用户定义函数)封装我们需要完成变换Python

    8.1K71

    Pyspark学习笔记(五)RDD操作(四)_RDD连接集合操作

    /集合操作 1.join-连接 对应于SQL中常见JOIN操作 菜鸟教程网关于SQL连接总结性资料 Pyspark连接函数要求定义键,因为连接过程是基于共同字段(键)来组合两个RDD记录...两个RDD各自包含key为基准,能找到共同Key,则返回两个RDD,找不到就各自返回各自,并以none****填充缺失 rdd_fullOuterJoin_test = rdd_1...这个就是笛卡尔积,也被称为交叉连接,它会根据两个RDD所有条目来进行所有可能组合。...2.Union-集合操作 2.1 union union(other) 官方文档:pyspark.RDD.union 转化操作union()把一个RDD追加到另一个RDD后面,两个RDD结构并不一定要相同...(即不一定数要相同),并且union并不会过滤重复条目。

    1.3K20
    领券