首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在R中创建内核密度图的网格

在R中创建内核密度图的网格可以通过以下步骤实现:

  1. 导入所需的库:使用library()函数导入ggplot2库和其他可能需要的库。
  2. 准备数据:将需要绘制内核密度图的数据准备好,可以是一个向量或一个数据框。
  3. 创建网格:使用expand.grid()函数创建一个网格,该网格将用于绘制内核密度图的坐标轴。
  4. 计算内核密度估计:使用density()函数计算内核密度估计值,将数据作为输入。
  5. 创建绘图对象:使用ggplot()函数创建一个绘图对象,并将内核密度估计值和网格作为数据输入。
  6. 添加图层:使用geom_tile()函数添加一个矩形图层,该图层将表示内核密度图的网格。
  7. 设置绘图参数:使用theme()函数设置绘图的主题、坐标轴标签等参数。
  8. 绘制内核密度图:使用ggplot2库中的绘图函数(如ggplot()geom_tile()theme()等)将内核密度图绘制出来。

以下是一个示例代码:

代码语言:txt
复制
# 导入所需的库
library(ggplot2)

# 准备数据
data <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

# 创建网格
grid <- expand.grid(x = seq(0, 10, by = 0.1), y = seq(0, 10, by = 0.1))

# 计算内核密度估计
density_est <- density(data)

# 创建绘图对象
plot <- ggplot() +
  geom_tile(data = grid, aes(x = x, y = y), fill = "white", color = "black") +
  geom_density_2d(data = data.frame(x = density_est$x, y = density_est$y), aes(x = x, y = y), fill = "blue", alpha = 0.5) +
  theme_minimal()

# 显示内核密度图
print(plot)

这段代码将创建一个内核密度图的网格,并使用蓝色的矩形表示内核密度图的网格。你可以根据需要调整填充颜色、透明度等参数来定制图表的外观。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • AAAI 2024 | 深度引导的快速鲁棒点云融合的稀疏 NeRF

    具有稀疏输入视图的新视角合成方法对于AR/VR和自动驾驶等实际应用非常重要。大量该领域的工作已经将深度信息集成到用于稀疏输入合成的NeRF中,利用深度先验协助几何和空间理解。然而,大多数现有的工作往往忽略了深度图的不准确性,或者只进行了粗糙处理,限制了合成效果。此外,现有的深度感知NeRF很少使用深度信息来创建更快的NeRF,总体时间效率较低。为了应对上述问题,引入了一种针对稀疏输入视图量身定制的深度引导鲁棒快速点云融合NeRF。这是点云融合与NeRF体积渲染的首次集成。具体来说,受TensoRF的启发,将辐射场视为一个的特征体素网格,由一系列向量和矩阵来描述,这些向量和矩阵沿着各自的坐标轴分别表示场景外观和几何结构。特征网格可以自然地被视为4D张量,其中其三个模式对应于网格的XYZ轴,第四个模式表示特征通道维度。利用稀疏输入RGB-D图像和相机参数,我们将每个输入视图的2D像素映射到3D空间,以生成每个视图的点云。随后,将深度值转换为密度,并利用两组不同的矩阵和向量将深度和颜色信息编码到体素网格中。可以从特征中解码体积密度和视图相关颜色,从而促进体积辐射场渲染。聚合来自每个输入视图的点云,以组合整个场景的融合点云。每个体素通过参考这个融合的点云来确定其在场景中的密度和外观。

    01

    一个完整的机器学习项目在Python中演练(四)

    【磐创AI导读】:本文是一个完整的机器学习项目在python中的演练系列第第四篇。详细介绍了超参数调整与模型在测试集上的评估两个步骤。欢迎大家点击上方蓝字关注我们的公众号:磐创AI。 大家往往会选择一本数据科学相关书籍或者完成一门在线课程来学习和掌握机器学习。但是,实际情况往往是,学完之后反而并不清楚这些技术怎样才能被用在实际的项目流程中。就像你的脑海中已经有了一块块”拼图“(机器学习技术),你却不知道如何讲他们拼起来应用在实际的项目中。如果你也遇见过同样的问题,那么这篇文章应该是你想要的。本系列文章将介绍

    05

    ICML 2024 | 基于体素网格的药物设计

    今天为大家介绍的是来自Prescient Design, Genentech团队的一篇论文。作者提出了VoxBind,这是一种基于评分的3D分子生成模型,该模型以蛋白质结构为条件。作者的方法将分子表示为3D原子密度网格,并利用3D体素去噪网络进行学习和生成。作者将神经经验贝叶斯的形式扩展到条件设置,并通过两步程序生成基于结构的分子:(i) 使用学习到的评分函数,通过欠阻尼的Langevin MCMC从高斯平滑的条件分布中采样噪声分子,(ii) 通过单步去噪从噪声样本中估计出干净的分子。与当前的最先进技术相比,作者的模型更易于训练,采样速度显著更快,并且在大量的计算基准测试中取得了更好的结果——生成的分子更加多样化,表现出更少的空间碰撞,并且与蛋白质口袋结合的亲和力更高。

    01

    基于ANSYS的水冷电机的热仿真

    当前随着车辆交通工具地不断普及,电力驱动技术被广泛应用到车辆传动领域;而作为电驱动技术的核心部件,为了满足车辆传动的严格要求,除了应具有效率高、调速宽、结构紧凑等特点外,还应具足够竞争力的输出功率,以满足车辆的巨大动力需求。所以,车载驱动电机往往需要很高的电磁负荷设计,在运行过程中由于电磁产热、摩擦等产生大量的热,使电机中内部温度急剧升高,各零部件存在过温被烧毁或失效的风险,而驱动电机的运行环境温度较高、通风散热效果差、冷却介质温度高有大大增加了过温风险。因此,对电机进行精准的热特性分析和计算,设计合理有效的电机散热系统是十分必要的,其对于高功率密度电机性能的提升起着至关重要的作用。一般使用等效热阻来计算电机温升,但计算结果过于简单,无法输出精确的温度三维分布,满足实际电机设计需要,故本文以某水冷电机为计算对象,使用Ansys软件建立完善的电机热性能分析流程,为高功率电机热设计提供高精度的温升信息参考。

    03
    领券