在Spark数据帧中获取窗口中的最大row_number可以通过以下步骤实现:
from pyspark.sql import SparkSession
from pyspark.sql.functions import row_number, max
from pyspark.sql.window import Window
spark = SparkSession.builder.getOrCreate()
df = spark.read.format("csv").option("header", "true").load("data.csv")
window = Window.orderBy("column_name").rowsBetween(Window.unboundedPreceding, Window.currentRow)
其中,"column_name"是你想要按照其排序的列名。
df_with_row_number = df.withColumn("row_number", row_number().over(window))
max_row_number = df_with_row_number.select(max("row_number")).first()[0]
完整的代码示例:
from pyspark.sql import SparkSession
from pyspark.sql.functions import row_number, max
from pyspark.sql.window import Window
spark = SparkSession.builder.getOrCreate()
df = spark.read.format("csv").option("header", "true").load("data.csv")
window = Window.orderBy("column_name").rowsBetween(Window.unboundedPreceding, Window.currentRow)
df_with_row_number = df.withColumn("row_number", row_number().over(window))
max_row_number = df_with_row_number.select(max("row_number")).first()[0]
这样,你就可以在Spark数据帧中获取窗口中的最大row_number了。
腾讯云相关产品和产品介绍链接地址:
领取专属 10元无门槛券
手把手带您无忧上云