在Google Colab上训练自定义对象检测模型ssd_mobilenet_v1_coco和ssd_inception_v2_coco,您可以按照以下步骤进行操作:
!pip install tensorflow==1.15.2
!pip install tf_slim
!pip install pycocotools
!git clone https://github.com/tensorflow/models.git
%cd models/research/
!protoc object_detection/protos/*.proto --python_out=.
import os
os.environ['PYTHONPATH'] += ':/content/models/research/:/content/models/research/slim/'
!python setup.py build
!python setup.py install
%cd /content/models/research/object_detection/
!wget http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_2018_01_28.tar.gz
!tar -xvf ssd_mobilenet_v1_coco_2018_01_28.tar.gz
!wget http://download.tensorflow.org/models/object_detection/ssd_inception_v2_coco_2018_01_28.tar.gz
!tar -xvf ssd_inception_v2_coco_2018_01_28.tar.gz
!python generate_tfrecord.py --csv_input=data/train_labels.csv --image_dir=data/train_images --output_path=train.record
!python generate_tfrecord.py --csv_input=data/test_labels.csv --image_dir=data/test_images --output_path=test.record
确保替换--csv_input
参数为您的标注文件路径,--image_dir
参数为您的图像文件夹路径,--output_path
参数为生成的记录文件路径。
/content/models/research/object_detection/samples/configs/
目录下,复制ssd_mobilenet_v1_coco.config
和ssd_inception_v2_coco.config
文件到/content/models/research/object_detection/training/
目录下。ssd_mobilenet_v1_coco.config
或ssd_inception_v2_coco.config
文件,按照注释进行以下修改:num_classes
设置为您自定义数据集中对象的类别数。fine_tune_checkpoint
设置为预训练模型的路径,如/content/models/research/object_detection/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt
。input_path
和label_map_path
设置为生成的记录文件路径和标签映射文件路径,如/content/models/research/object_detection/train.record
和/content/models/research/object_detection/training/labelmap.pbtxt
。num_steps
设置为训练的总步数。%cd /content/models/research/object_detection/
!python train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config
确保替换--pipeline_config_path
参数为您选择的配置文件路径。
!python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix training/model.ckpt-XXXX --output_directory trained_model
确保替换--pipeline_config_path
参数为您选择的配置文件路径,--trained_checkpoint_prefix
参数为训练过程中生成的最新模型的路径,--output_directory
参数为导出模型的目标文件夹路径。
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# 加载标签映射文件
label_map = label_map_util.load_labelmap('training/labelmap.pbtxt')
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=num_classes, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# 加载训练好的模型
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile('trained_model/frozen_inference_graph.pb', 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# 进行推理
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# 获取输入和输出张量
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# 加载测试图像
image = cv2.imread('test_image.jpg')
image_expanded = np.expand_dims(image, axis=0)
# 进行对象检测
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
# 可视化检测结果
vis_util.visualize_boxes_and_labels_on_image_array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
# 显示结果图像
cv2.imshow('Object Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
确保替换trained_model/frozen_inference_graph.pb
为您导出的模型路径,test_image.jpg
为您要进行推理的图像路径。
以上是在Google Colab上训练自定义对象检测模型ssd_mobilenet_v1_coco和ssd_inception_v2_coco的步骤。请注意,这只是一个简单的示例,具体的操作可能因环境和需求而有所不同。
领取专属 10元无门槛券
手把手带您无忧上云