在Keras中实现生成对抗网络(GAN)的交叉验证,可以通过以下步骤进行:
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, LeakyReLU, BatchNormalization
from keras.optimizers import Adam
from keras.datasets import mnist
import numpy as np
def build_generator():
generator = Sequential()
generator.add(Dense(256, input_dim=100))
generator.add(LeakyReLU(alpha=0.01))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(512))
generator.add(LeakyReLU(alpha=0.01))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(1024))
generator.add(LeakyReLU(alpha=0.01))
generator.add(BatchNormalization(momentum=0.8))
generator.add(Dense(784, activation='tanh'))
generator.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))
return generator
def build_discriminator():
discriminator = Sequential()
discriminator.add(Dense(512, input_dim=784))
discriminator.add(LeakyReLU(alpha=0.01))
discriminator.add(Dense(256))
discriminator.add(LeakyReLU(alpha=0.01))
discriminator.add(Dense(1, activation='sigmoid'))
discriminator.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))
return discriminator
generator = build_generator()
discriminator = build_discriminator()
discriminator.trainable = False
gan_input = Input(shape=(100,))
gan_output = discriminator(generator(gan_input))
gan = Model(gan_input, gan_output)
gan.compile(loss='binary_crossentropy', optimizer=Adam(0.0002, 0.5))
def train(epochs, batch_size, save_interval):
(X_train, _), (_, _) = mnist.load_data()
X_train = X_train / 127.5 - 1.0
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1]*X_train.shape[2]))
for epoch in range(epochs):
# 随机选择真实图像样本
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_images = X_train[idx]
# 生成噪声作为输入
noise = np.random.normal(0, 1, (batch_size, 100))
# 通过生成器生成假图像
generated_images = generator.predict(noise)
# 训练判别器
discriminator_loss_real = discriminator.train_on_batch(real_images, np.ones((batch_size, 1)))
discriminator_loss_fake = discriminator.train_on_batch(generated_images, np.zeros((batch_size, 1)))
discriminator_loss = 0.5 * np.add(discriminator_loss_real, discriminator_loss_fake)
# 训练生成器
noise = np.random.normal(0, 1, (batch_size, 100))
generator_loss = gan.train_on_batch(noise, np.ones((batch_size, 1)))
# 打印损失
print('Epoch: %d, 生成器损失: %f, 判别器损失: %f' % (epoch+1, generator_loss, discriminator_loss))
# 保存生成的图像
if epoch % save_interval == 0:
save_generated_images(epoch)
# 保存最后一次的生成器和判别器模型
generator.save('generator_model.h5')
discriminator.save('discriminator_model.h5')
def save_generated_images(epoch):
rows, cols = 5, 5
noise = np.random.normal(0, 1, (rows * cols, 100))
generated_images = generator.predict(noise)
generated_images = 0.5 * generated_images + 0.5
fig, axs = plt.subplots(rows, cols)
idx = 0
for i in range(rows):
for j in range(cols):
axs[i,j].imshow(generated_images[idx, :].reshape(28, 28), cmap='gray')
axs[i,j].axis('off')
idx += 1
fig.savefig('generated_images_%d.png' % epoch)
plt.close()
train(epochs=20000, batch_size=32, save_interval=1000)
这样就可以在Keras中实现生成对抗网络(GAN)的交叉验证。具体实现过程中所使用的参数、优化器等可以根据具体情况进行调整。
领取专属 10元无门槛券
手把手带您无忧上云