首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在python中创建网格边框?

在Python中创建网格边框可以使用第三方库matplotlib来实现。matplotlib是一个广泛使用的绘图库,可用于创建各种类型的图表,包括网格边框。

以下是一个简单的示例代码,演示了如何在Python中使用matplotlib创建网格边框:

代码语言:txt
复制
import matplotlib.pyplot as plt

# 创建数据
data = [[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]]

# 创建网格边框
fig, ax = plt.subplots()
ax.axis('tight')
ax.axis('off')
table = ax.table(cellText=data, loc='center', cellLoc='center')

# 设置网格边框样式
table.auto_set_font_size(False)
table.set_fontsize(14)
table.scale(1.2, 1.2)

# 显示图表
plt.show()

上述代码首先导入matplotlib.pyplot模块,并创建了一个包含数据的二维列表data。接下来,通过subplots()函数创建一个绘图对象fig和一个坐标系对象ax。然后,使用axis()函数将坐标系的刻度标签和边框隐藏,只保留网格边框。使用table()函数在坐标系中创建一个表格,并传入数据data。最后,通过调整表格的字体大小和缩放比例,设置网格边框的样式。最后调用show()函数显示图表。

这是一个简单的示例,你可以根据实际需求进一步定制和修改代码。另外,需要安装matplotlib库,可以通过pip install matplotlib命令进行安装。

关于matplotlib的更多信息,你可以访问腾讯云的相关产品和文档:

希望以上信息对你有所帮助!

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 人员玩手机离岗识别检测系统

    人员玩手机离岗识别检测系统通过python+yolov5网络模型识别算法技术,人员玩手机离岗识别检测系统可以对画面中人员睡岗离岗、玩手机打电话、脱岗睡岗情况进行全天候不间断进行识别检测报警提醒。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    02

    值班离岗智能识别监测系统

    值班离岗智能识别监测系统通过python+yolo网络模型视频分析技术,值班离岗智能识别监测系统能自动检测画面中人员的岗位状态(睡岗或者离岗),值班离岗智能识别监测系统一旦发现人员不在岗位的时间超出后台设置时间,立即抓拍存档提醒。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    02

    学校围墙攀爬识别报警系统

    学校围墙攀爬识别报警系统通过python+yolo网络模型深度学习技术,学校围墙攀爬识别报警系统能主动识别分析出学生翻墙、打架事件、人群聚集事件、人员倒地倒事件、区域闯入事件、违规攀爬事件,学校围墙攀爬识别报警系统通过python+yolo网络模型深度学习技术提升校园安全监控管控效率。Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。

    03

    山西煤矿电子封条算法 yolov5

    山西煤矿电子封条通过python+yolov5网络模型AI视觉技术,python+yolov5算法模型实现对现场人员行为及设备状态全方面自动识别预警。 YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎,接下来我们介绍YOLO 系列算法。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。

    00
    领券