在scikit-learn中,归一化TF-IDF或计数可以通过使用sklearn.preprocessing
模块中的Normalizer
类来实现。以下是具体的步骤和示例代码:
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import Normalizer
# 示例文本数据
texts = [
"This is the first document.",
"This document is the second document.",
"And this is the third one.",
"Is this the first document?"
]
# 创建TF-IDF向量化器
tfidf_vectorizer = TfidfVectorizer()
tfidf_matrix = tfidf_vectorizer.fit_transform(texts)
# 创建归一化器
normalizer = Normalizer(norm='l2')
# 归一化TF-IDF矩阵
normalized_tfidf_matrix = normalizer.fit_transform(tfidf_matrix)
# 创建计数向量化器
count_vectorizer = CountVectorizer()
count_matrix = count_vectorizer.fit_transform(texts)
# 归一化计数矩阵
normalized_count_matrix = normalizer.fit_transform(count_matrix)
通过上述步骤,你可以成功地在scikit-learn中对TF-IDF或计数进行归一化处理。
领取专属 10元无门槛券
手把手带您无忧上云