首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何在spark中读取压缩的avro文件(.gz)?

在Spark中读取压缩的Avro文件(.gz)可以通过以下步骤实现:

  1. 导入必要的库和类:
代码语言:txt
复制
import org.apache.avro.generic.GenericRecord
import org.apache.avro.mapred.{AvroInputFormat, AvroWrapper}
import org.apache.hadoop.io.NullWritable
  1. 创建SparkSession:
代码语言:txt
复制
val spark = SparkSession.builder().appName("Read Compressed Avro File in Spark").getOrCreate()
  1. 设置输入路径和压缩编解码器:
代码语言:txt
复制
val inputPath = "path/to/compressed_avro.gz"
spark.conf.set("spark.hadoop.mapred.input.dir.recursive", "true") // 对于目录递归搜索
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputdir", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputdir.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputdir.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs", inputPath)
spark.conf.set("spark.hadoop.mapred.input.dir", inputPath)
spark.conf.set("spark.hadoop.mapred.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dir.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.list.status", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.listing.prune", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.num-threads", "5")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.threads.sleep-ms", "1000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.interval-ms", "5000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.offset-interval-ms", "5000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.threads", "5")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.file-cache-size", "5000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.use-partial-listing", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.time-interval", "5000")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.maxsize", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.node", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.rack", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.non-recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.num-threads", "5")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.node.calculator", "org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat$OneBlockPerSplit")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.rack.calculator", "org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat$OneBlockPerSplit")
spark.conf.set("spark.hadoop.mapred.input.format.class", classOf[AvroInputFormat[GenericRecord]].getName)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputformat", classOf[AvroInputFormat[GenericRecord]].getName)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputformat", "org.apache.hadoop.mapreduce.lib.input.AvroKeyInputFormat")
spark.conf.set("spark.hadoop.mapred.input.format.class", "org.apache.hadoop.mapreduce.lib.input.AvroKeyInputFormat")
spark.conf.set("spark.hadoop.mapred.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapred.input.pathFilter.class", "org.apache.hadoop.fs.PathFilter")
spark.conf.set("spark.hadoop.mapred.input.pathFilter.class", "org.apache.hadoop.mapred.SimpleRegexPathFilter")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.num-threads", "5")
spark.conf.set("spark.hadoop.mapred.input.dir.listing.interval-ms", "5000")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.threads.sleep-ms", "1000")
spark.conf.set("spark.hadoop.mapred.input.dir.listing.prune.file-cache-size", "5000")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.list-status.threads.sleep-ms", "1000")
spark.conf.set("spark.hadoop.mapred.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.inputdir", inputPath)
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir", inputPath)
spark.conf.set("spark.hadoop.mapred.input.dir", inputPath)
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.interval-ms", "5000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.offset-interval-ms", "5000")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.maxsize", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.use-partial-listing", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.time-interval", "5000")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.node", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.node.calculator", "org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat$OneBlockPerSplit")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.rack", "134217728")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.split.minsize.per.rack.calculator", "org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat$OneBlockPerSplit")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.non-recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dir.non-recursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.threads", "5")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.recursive", "true")
spark.conf.set("spark.hadoop.mapreduce.input.fileinputformat.input.dirs.nonrecursive", "true")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.file-cache-size", "5000")
spark.conf.set("spark.hadoop.mapred.input.dirs.listing.prune.threads", "5")
spark.conf.set("spark.hadoop.mapred.input.format.class", classOf[AvroInputFormat[GenericRecord]].getName)
  1. 读取压缩的Avro文件:
代码语言:txt
复制
val avroRDD = spark.sparkContext.hadoopFile[AvroWrapper[GenericRecord], NullWritable, AvroInputFormat[GenericRecord]](inputPath)
val records = avroRDD.map(record => record._1.get())
  1. 对records进行进一步处理:
代码语言:txt
复制
records.foreach(println)

需要注意的是,以上代码中的inputPath应该替换为实际的文件路径,同时确保相关的库已经正确导入。

关于Spark、Avro和压缩文件的更多信息,请参考腾讯云的相关文档和产品介绍链接:

  • Spark文档:https://cloud.tencent.com/document/product/1007
  • Avro文档:https://cloud.tencent.com/document/product/849
  • 压缩文件产品介绍:https://cloud.tencent.com/product/compress
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

没有搜到相关的合辑

领券