首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

有效利用 Apache Spark 进行流数据处理中的状态计算

前言在大数据领域,流数据处理已经成为处理实时数据的核心技术之一。Apache Spark 提供了 Spark Streaming 模块,使得我们能够以分布式、高性能的方式处理实时数据流。...其中,状态计算是流数据处理中的重要组成部分,用于跟踪和更新数据流的状态。...Spark Streaming 中的状态计算原理在 Spark Streaming 中,状态计算的基本原理是将状态与键(Key)相关联,并在每个时间间隔(batch interval)内,根据接收到的新数据更新状态...随着深度学习在各个领域的广泛应用,Spark 将不断寻求更好地与深度学习框架(如TensorFlow、PyTorch)集成,以支持深度学习模型的训练和部署。...随着技术的不断发展和 Spark 社区的持续贡献,其应用方向和前景将继续保持活力。结语在流数据处理中,状态计算是实现更复杂、更灵活业务逻辑的关键。

30910

如何从 Pandas 迁移到 Spark?这 8 个问答解决你所有疑问

Spark 学起来更难,但有了最新的 API,你可以使用数据帧来处理大数据,它们和 Pandas 数据帧用起来一样简单。 此外,直到最近,Spark 对可视化的支持都不怎么样。...作为 Spark 贡献者的 Andrew Ray 的这次演讲应该可以回答你的一些问题。 它们的主要相似之处有: Spark 数据帧与 Pandas 数据帧非常像。...有时,在 SQL 中编写某些逻辑比在 Pandas/PySpark 中记住确切的 API 更容易,并且你可以交替使用两种办法。 Spark 数据帧是不可变的。不允许切片、覆盖数据等。...Spark 不仅提供数据帧(这是对 RDD 的更高级别的抽象),而且还提供了用于流数据和通过 MLLib 进行分布式机器学习的出色 API。...有的,下面是一个 ETL 管道,其中原始数据从数据湖(S3)处理并在 Spark 中变换,加载回 S3,然后加载到数据仓库(如 Snowflake 或 Redshift)中,然后为 Tableau 或

4.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    「Hudi系列」Hudi查询&写入&常见问题汇总

    在运行启发式方法以确定如何最好地将这些记录放到存储上,如优化文件大小之类后,这些记录最终会被写入。对于诸如数据库更改捕获之类的用例,建议该操作,因为输入几乎肯定包含更新。...如概念部分所述,增量处理所需要的一个关键原语是增量拉取(以从数据集中获取更改流/日志)。您可以增量提取Hudi数据集,这意味着自指定的即时时间起,您可以只获得全部更新和新行。...Spark Spark可将Hudi jars和捆绑包轻松部署和管理到作业/笔记本中。简而言之,通过Spark有两种方法可以访问Hudi数据集。...典型的批处理作业每隔几个小时就会消费所有输入并重新计算所有输出。典型的流处理作业会连续/每隔几秒钟消费一些新的输入并重新计算新的/更改以输出。...例如,如果在最后一个小时中,在1000个文件的分区中仅更改了100个文件,那么与完全扫描该分区以查找新数据相比,使用Hudi中的增量拉取可以将速度提高10倍。

    6.6K42

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...例 1 在此示例中,我们创建了一个空数据帧。然后,通过将列名 ['Name', 'Age'] 传递给 DataFrame 构造函数的 columns 参数,我们在数据帧中创建 2 列。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    Apache Hudi在Hopsworks机器学习的应用

    •引擎:在线特征存储带有可扩展的无状态服务,可确保数据尽快写入在线特征存储,而不会从数据流(Spark 结构化流)或静态 Spark 或 Pandas DataFrame中进行写入放大,即不必在摄取特征之前先将特征物化到存储中...3.消费和解码 我们使用 Kafka 来缓冲来自 Spark 特征工程作业的写入,因为直接写入 RonDB 的大型 Spark 集群可能会使 RonDB 过载,因为现有 Spark JDBC 驱动程序中缺乏背压...此外所有涉及的服务都是水平可扩展的(Spark、Kafka、OnlineFS),并且由于我们类似于流的设置,该过程不会创建不必要的数据副本,即没有写放大。...但是也可以通过将批次写入 Spark 结构化流应用程序中的数据帧来连续更新特征组对象。...在这篇博客中,我们展示了一个高度可用的双节点 RonDB 集群(r5.2xlarge VM)线性扩展到 >250k ops/sec,特征向量查找的 11 个特征的大小约为 1KB,p99 延迟为 7.5

    91320

    Hudi实践 | Apache Hudi在Hopsworks机器学习的应用

    •引擎:在线特征存储带有可扩展的无状态服务,可确保数据尽快写入在线特征存储,而不会从数据流(Spark 结构化流)或静态 Spark 或 Pandas DataFrame中进行写入放大,即不必在摄取特征之前先将特征物化到存储中...3.消费和解码 我们使用 Kafka 来缓冲来自 Spark 特征工程作业的写入,因为直接写入 RonDB 的大型 Spark 集群可能会使 RonDB 过载,因为现有 Spark JDBC 驱动程序中缺乏背压...此外所有涉及的服务都是水平可扩展的(Spark、Kafka、OnlineFS),并且由于我们类似于流的设置,该过程不会创建不必要的数据副本,即没有写放大。...但是也可以通过将批次写入 Spark 结构化流应用程序中的数据帧来连续更新特征组对象。...在这篇博客中,我们展示了一个高度可用的双节点 RonDB 集群(r5.2xlarge VM)线性扩展到 >250k ops/sec,特征向量查找的 11 个特征的大小约为 1KB,p99 延迟为 7.5

    1.3K10

    Yelp 的 Spark 数据血缘建设实践!

    在这篇博文中,我们介绍了 Spark-Lineage,这是一种内部产品,用于跟踪和可视化 Yelp 的数据是如何在我们的服务之间处理、存储和传输的。...Spark-ETL 作业的示例图 在后端,我们直接在 Spark-ETL 中实现 Spark-Lineage,以从每个批处理作业中提取所有具有依赖关系的源表和目标表对。...更准确地说,我们使用NetworkX库来构建作业的工作流图,并在该作业的相应有向无环图 (DAG) 工作流中查找在它们之间具有路径的所有源表和目标表对。...我们暂存此数据的原因是为了识别在日常负载中引入的任何新作业或捕获对现有计划作业的任何更新。 然后,我们为每个 Spark-ETL 表创建一个链接(表、文件等的规范术语)以及从元数据中提取的附加信息。...此类错误可能会静默一段时间,一旦被发现,就已经影响了下游作业。在这种情况下,响应包括冻结所有下游作业以防止损坏的数据进一步传播,跟踪所有上游作业以查找错误源,然后从那里回填所有下游不准确的数据。

    1.4K20

    SparkFlinkCarbonData技术实践最佳案例解析

    流的定义是一种无限表(unbounded table),把数据流中的新数据追加在这张无限表中,而它的查询过程可以拆解为几个步骤,例如可以从 Kafka 读取 JSON 数据,解析 JSON 数据,存入结构化...因为历史状态记录可能无限增长,这会带来一些性能问题,为了限制状态记录的大小,Spark 使用水印(watermarking)来删除不再更新的旧的聚合数据。...针对当前大数据领域分析场景需求各异而导致的存储冗余问题,CarbonData 提供了一种新的融合数据存储方案,以一份数据同时支持支持快速过滤查找和各种大数据离线分析和实时分析,并通过多级索引、字典编码、...Flink 在美团的实践与应用 美团点评数据平台的高级工程师孙梦瑶介绍了美团的实时平台架构及当前痛点,带来了美团如何在 Flink 上的实践以及如何打造实时数据平台,最后介绍了实时指标聚合系统和机器学习平台是如何利用...时金魁在演讲中重点讲解了数据流模型,即它是一个实时往下流的过程。在 Flink 中,客观的理解就是一个无限的数据流,提供分配和合并,并提供触发器和增量处理机制。如下图所示: ?

    1.4K20

    使用Spark进行微服务的实时性能分析

    信息是如何在服务中穿梭流动的?哪里是瓶颈点?如何确定用户体验的延迟是由网络还是调用链中的微服务引起? ?...前者基于Spark流抽象,后者则是一组由Spark作业服务器管理的批处理作业。 跟踪不同微服务之间的事务(或请求流)需要根据应用程序中不同微服务之间的请求-响应对创建因果关系。...这个用例会修改该算法来操作数据包流的移动窗口,并慢慢逐步完善的拓扑结构推断。 图3显示了事务跟踪应用中作业的部分工作流程。图4显示了在一个租户应用中的事务跟踪,由Spark应用推导。...图6和7显示调用图和租户应用延迟时间的统计数据,作为该批次的分析作业输出。 ? ? ? 通过Spark平台,各种不同类型的分析应用可以同时操作,如利用一个统一的大数据平台进行批量处理、流和图形处理。...下一步则是研究系统的可扩展性方面,如通过增加主机线性提升数据提取速度,并同时处理成千上万租户的应用踪迹。后续会继续汇报这方面的进展情况。

    1.2K90

    基于Apache Hudi 的CDC数据入湖

    整个数据入仓是分实时流是离线流,实时流解析binlog,通过Canal解析binlog,然后写入Kafka,然后每个小时会把Kafka数据同步到Hive中;另外就是离线流,离线流需要对同步到Hive的贴源层的表进行拉取一次全量...上游各种各样的数据源,比如DB的变更数据、事件流,以及各种外部数据源,都可以通过变更流的方式写入表中,再进行外部的查询分析,整个架构非常简单。 架构虽然简单,但还是面临很多挑战。...另外是面向查询优化,Hudi内部会自动做小文件的管理,文件会自动长到用户指定的文件大小,如128M,这对Hudi来说也是比较核心的特性。另外Hudi提供了Clustering来优化文件布局的功能。...然后会启动一个增量作业,增量作业通过Spark消费阿里云DTS里的binlog数据来将binlog准实时同步至Hudi表。...在字节场景中, Bloomfilter过滤器完全不能满足日增PB的索引查找,因此他们使用HBase高性能索引,因此用户可根据自己的业务形态灵活选择不同索引的实现。

    1.2K10

    基于Apache Hudi 的CDC数据入湖

    整个数据入仓是分实时流是离线流,实时流解析binlog,通过Canal解析binlog,然后写入Kafka,然后每个小时会把Kafka数据同步到Hive中;另外就是离线流,离线流需要对同步到Hive的贴源层的表进行拉取一次全量...上游各种各样的数据源,比如DB的变更数据、事件流,以及各种外部数据源,都可以通过变更流的方式写入表中,再进行外部的查询分析,整个架构非常简单。 架构虽然简单,但还是面临很多挑战。...另外是面向查询优化,Hudi内部会自动做小文件的管理,文件会自动长到用户指定的文件大小,如128M,这对Hudi来说也是比较核心的特性。另外Hudi提供了Clustering来优化文件布局的功能。...然后会启动一个增量作业,增量作业通过Spark消费阿里云DTS里的binlog数据来将binlog准实时同步至Hudi表。...在字节场景中, Bloomfilter过滤器完全不能满足日增PB的索引查找,因此他们使用HBase高性能索引,因此用户可根据自己的业务形态灵活选择不同索引的实现。

    1.7K30

    查询hudi数据集

    从概念上讲,Hudi物理存储一次数据到DFS上,同时在其上提供三个逻辑视图,如之前所述。 数据集同步到Hive Metastore后,它将提供由Hudi的自定义输入格式支持的Hive外部表。...如概念部分所述,增量处理所需要的 一个关键原语是增量拉取(以从数据集中获取更改流/日志)。您可以增量提取Hudi数据集,这意味着自指定的即时时间起, 您可以只获得全部更新和新行。...Spark Spark可将Hudi jars和捆绑包轻松部署和管理到作业/笔记本中。简而言之,通过Spark有两种方法可以访问Hudi数据集。...通常,您的spark作业需要依赖hudi-spark或hudi-spark-bundle-x.y.z.jar, 它们必须位于驱动程序和执行程序的类路径上(提示:使用--jars参数)。...], classOf[org.apache.hadoop.fs.PathFilter]); 如果您希望通过数据源在DFS上使用全局路径,则只需执行以下类似操作即可得到Spark数据帧。

    1.8K30

    如何使用Hue上创建一个完整Oozie工作流

    ,如何能够方便的构建一个完整的工作流在CDH集群中执行,前面Fayson也讲过关于Hue创建工作流的一系列文章具体可以参考《如何使用Hue创建Spark1和Spark2的Oozie工作流》、《如何使用Hue...创建Spark2的Oozie工作流(补充)》、《如何在Hue中创建Ssh的Oozie工作流》。...ETL作业 ---- 将Sqoop抽取的数据通过Python的Spark作业进行ETL操作写入Hive表中 1.编写Spark脚本 #!...---- 将Spark作业处理后的数据写入hive表中,使用Hive对表进行查询操作 编写hive-query.sql文件,内容如下: select * from testaaa where age>...的lib目录下 [28vh6x127v.jpeg] 4.在工作流中添加Sqoop抽数作业 [ox2ani8678.jpeg] 5.添加PySpark ETL工作流 [ulg3ubv5ye.jpeg] 5

    4.3K60

    Meson:Netflix即将开源的机器学习工作流编排工具

    (注:本文所有图片均可在极客头条原文中点击放大) 工作流包括: 选择一组用户——使用Hive查询来选择用于分析的队列 清洗/准备数据——一个Python脚本来创建两组用户,用于并行路径 在并行路径中,一条使用...上图显示了上面描述的工作流运行过程。 用户集选择,数据清洗的完成由绿色步骤表示。 并行路径正在处理: Spark分支完成了模型的生成和验证。...揭开面纱 让我们深入幕后场景来了解Meson是如何在不同系统之间统筹,以及生态系统中不同组件之间的相互影响。工作流有着不同的资源需求和总运行时间期望。...编写自定义的执行器可以让我们保持与Meson的通信通道。这在长时间运行任务中尤其有效,框架的消息可以被发送给Meson调度器。这也可以让我们传递自定义数据,而不仅仅是退出代码或状态信息。...Meson中的Spark Submit可以从Meson中监控Spark作业进度,能够重试失败的Spark步骤或杀死可能出错的Spark作业。

    1.9K30

    Apache Spark:来自Facebook的60 TB +生产用例

    据我们所知,这是在shuffle数据大小方面尝试的最大的Spark job(Databricks的Petabyte排序 是在合成数据上)。...性能改进 在实现上述可靠性改进之后,我们能够可靠地运行Spark作业。在这一点上,我们将努力转向与性能相关的项目,以充分利用Spark。我们使用Spark的指标和几个分析器来查找一些性能瓶颈。...Jstack:Spark UI还在执行程序进程上提供按需jstack函数,可用于查找代码中的热点。...Spark能够在内存中缓存数据,但由于我们的集群内存限制,我们决定使用类似于Hive的核外工作。 ? 延迟:作业的端到端经过时间。 ?...在这个特定的用例中,我们展示了Spark可以可靠地shuffle和排序90 TB +中间数据,并在一个作业中运行250,000个任务。

    1.3K20

    盘点13种流行的数据处理工具

    实时的流处理通常涉及查询少量的热数据,只需要很短的时间就可以得到答案。例如,基于MapReduce的系统(如Hadoop)就是支持批处理作业类型的平台。数据仓库是支持查询引擎类型的平台。...流数据处理需要摄取数据序列,并根据每条数据记录进行增量更新。通常,它们摄取连续产生的数据流,如计量数据、监控数据、审计日志、调试日志、网站点击流以及设备、人员和商品的位置跟踪事件。...Apache Spark是一个大规模并行处理系统,它有不同的执行器,可以将Spark作业拆分,并行执行任务。为了提高作业的并行度,可以在集群中增加节点。Spark支持批处理、交互式和流式数据源。...DAG可以跟踪作业过程中数据的转换或数据沿袭情况,并将DataFrames存储在内存中,有效地最小化I/O。Spark还具有分区感知功能,以避免网络密集型的数据改组。...Glue作业授权功能可处理作业中的任何错误,并提供日志以了解底层权限或数据格式问题。Glue提供了工作流,通过简单的拖放功能帮助你建立自动化的数据流水线。

    2.6K10

    ApacheHudi常见问题汇总

    另外,如果你的ETL /hive/spark作业很慢或占用大量资源,那么Hudi可以通过提供一种增量式读取和写入数据的方法来提供帮助。...典型的批处理作业每隔几个小时就会消费所有输入并重新计算所有输出。典型的流处理作业会连续/每隔几秒钟消费一些新的输入并重新计算新的/更改以输出。...读时合并(Merge On Read):此存储类型使客户端可以快速将数据摄取为基于行(如avro)的数据格式。...想使操作更为简单(无需压缩等),并且摄取/写入性能仅受parquet文件大小以及受更新影响文件数量限制 工作流很简单,并且不会突然爆发大量更新或插入到较旧的分区。...Hudi如何在数据集中实际存储数据 从更高层次上讲,Hudi基于MVCC设计,将数据写入parquet/基本文件以及包含对基本文件所做更改的日志文件的不同版本。

    1.8K20

    运营数据库系列之NoSQL和相关功能

    核心价值 Cloudera的OpDB默认情况下存储未类型化的数据,这意味着任何对象都可以原生存储在键值中,而对存储值的数量和类型几乎没有限制。对象的最大大小是服务器的内存大小。 1.3.2....表样式 Cloudera的OpDB是一个宽列的数据存储,并且原生提供表样式的功能,例如行查找以及将数百万列分组为列族。 必须在创建表时定义列簇。...目录是用户定义的json格式。 HBase数据帧是标准的Spark数据帧,并且能够与任何其他数据源(例如Hive,ORC,Parquet,JSON等)进行交互。...有关更多信息,请参阅Cloudera流处理 。 Spark Streaming Spark Streaming是在Spark之上构建的微批处理流处理框架。...结论 在此博客文章中,我们介绍了OpDB的NoSQL功能。我们还看到了OpDB如何与CDP中的其他组件集成。 这是有关CDP中Cloudera的运营数据库(OpDB)系列的最后一篇博客文章。

    97910

    在hue上部署spark作业

    编写Spark作业代码: 在Hue的Spark作业编辑器中编写你的Spark应用程序代码。你可以编写使用Spark SQL、Spark Streaming或Spark Core的作业。...配置作业参数: 配置你的Spark作业所需的参数,如输入文件、输出目录、并行度等。提交作业: 配置完成后,点击“Submit”按钮提交你的Spark作业到Hue。...在Hue上部署Spark作业通常涉及编写Spark应用程序代码和在Hue的Web界面上提交该作业。以下是一个简单的案例,展示了如何在Hue上部署一个基本的Spark SQL作业。...步骤1:编写Spark SQL作业代码首先,我们需要编写一个Spark SQL作业来处理数据。这里是一个简单的PySpark脚本例子,它读取一个CSV文件,然后执行一些SQL查询。#!...步骤2:在Hue上提交Spark作业在Hue的Web界面上,你可以提交这个脚本作为作业。以下是如何在Hue中提交作业的步骤:打开Hue Web界面,并导航到“Spark”部分。

    7710
    领券