在tf.estimator.Estimator中获取隐藏图层输出,可以通过以下步骤实现:
def model_fn(features, labels, mode):
# 定义输入层
input_layer = tf.reshape(features["x"], [-1, input_size])
# 定义隐藏图层
hidden_layer = tf.layers.dense(inputs=input_layer, units=hidden_units, activation=tf.nn.relu)
# 根据模式进行不同的操作
if mode == tf.estimator.ModeKeys.TRAIN:
# 定义输出层和损失函数
output_layer = tf.layers.dense(inputs=hidden_layer, units=output_size)
loss = ...
train_op = ...
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
elif mode == tf.estimator.ModeKeys.EVAL:
# 定义输出层和评估指标
output_layer = tf.layers.dense(inputs=hidden_layer, units=output_size)
loss = ...
eval_metric_ops = ...
return tf.estimator.EstimatorSpec(mode, loss=loss, eval_metric_ops=eval_metric_ops)
elif mode == tf.estimator.ModeKeys.PREDICT:
# 定义输出层
output_layer = tf.layers.dense(inputs=hidden_layer, units=output_size)
predictions = ...
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir)
estimator.train(input_fn=train_input_fn, steps=num_steps)
estimator.evaluate(input_fn=eval_input_fn)
predictions = estimator.predict(input_fn=predict_input_fn)
def hidden_layer_model_fn(features, labels, mode):
# 定义输入层
input_layer = tf.reshape(features["x"], [-1, input_size])
# 定义隐藏图层
hidden_layer = tf.layers.dense(inputs=input_layer, units=hidden_units, activation=tf.nn.relu)
# 返回隐藏图层的输出
return hidden_layer
estimator = tf.estimator.Estimator(model_fn=hidden_layer_model_fn, model_dir=model_dir)
hidden_layer_outputs = estimator.predict(input_fn=predict_input_fn)
通过以上步骤,你可以在tf.estimator.Estimator中获取隐藏图层的输出。隐藏图层的输出可以用于进一步的分析、可视化或其他后续处理。
领取专属 10元无门槛券
手把手带您无忧上云