将CNN LSTM模型从Keras转换为PyTorch可以通过以下步骤完成:
import torch
import torch.nn as nn
import torch.nn.functional as F
class CNNLSTM(nn.Module):
def __init__(self):
super(CNNLSTM, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.dropout = nn.Dropout(0.5)
self.lstm = nn.LSTM(64, 128, batch_first=True)
self.fc = nn.Linear(128, num_classes)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = x.view(x.size(0), -1)
x = self.dropout(x)
x = x.unsqueeze(1)
x, _ = self.lstm(x)
x = x[:, -1, :]
x = self.fc(x)
return x
在这个例子中,我们假设输入数据是2D图像,因此使用了nn.Conv2d
进行卷积操作。如果输入数据是其他形式的数据,可以根据需要进行调整。
num_classes = 10
learning_rate = 0.001
criterion = nn.CrossEntropyLoss()
model = CNNLSTM()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# 假设有训练数据集 train_dataset 和测试数据集 test_dataset
# 创建数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False)
# 训练模型
for epoch in range(num_epochs):
for images, labels in train_loader:
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 在测试集上评估模型
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print('Epoch [{}/{}], Accuracy: {:.2f}%'.format(epoch+1, num_epochs, accuracy))
通过以上步骤,你可以将CNN LSTM模型从Keras转换为PyTorch,并进行训练和评估。请注意,这只是一个示例,实际应用中可能需要根据具体情况进行调整和修改。
领取专属 10元无门槛券
手把手带您无忧上云