将vader sentiment脚本的输出转换为CSV数据框的步骤如下:
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
texts = ["I love this product!", "This movie is terrible.", "The weather is beautiful today."]
df = pd.DataFrame(columns=['Text', 'Positive', 'Neutral', 'Negative', 'Compound'])
for text in texts:
sentiment = analyzer.polarity_scores(text)
df = df.append({'Text': text,
'Positive': sentiment['pos'],
'Neutral': sentiment['neu'],
'Negative': sentiment['neg'],
'Compound': sentiment['compound']}, ignore_index=True)
df.to_csv('sentiment_analysis.csv', index=False)
完整的代码如下:
import pandas as pd
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
analyzer = SentimentIntensityAnalyzer()
texts = ["I love this product!", "This movie is terrible.", "The weather is beautiful today."]
df = pd.DataFrame(columns=['Text', 'Positive', 'Neutral', 'Negative', 'Compound'])
for text in texts:
sentiment = analyzer.polarity_scores(text)
df = df.append({'Text': text,
'Positive': sentiment['pos'],
'Neutral': sentiment['neu'],
'Negative': sentiment['neg'],
'Compound': sentiment['compound']}, ignore_index=True)
df.to_csv('sentiment_analysis.csv', index=False)
这段代码使用了Vader情感分析库,将给定的文本列表进行情感分析,并将结果存储在一个具有文本、积极、中立、消极和综合情感得分的数据框中。最后,将数据框保存为名为"sentiment_analysis.csv"的CSV文件。
腾讯云相关产品:
以上是腾讯云在相应领域的相关产品和介绍链接,可以根据具体需求选择适合的产品。
领取专属 10元无门槛券
手把手带您无忧上云