首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何根据土地覆盖计算R中的散点图?

根据土地覆盖计算R中的散点图可以通过以下步骤实现:

  1. 数据准备:首先,需要准备包含土地覆盖数据的数据集。这个数据集可以包含多个变量,如土地类型、土地面积、土地利用等。
  2. 数据导入:使用R语言的相关函数,如read.csv()或read.table(),将数据集导入到R环境中。
  3. 数据处理:根据需要,对数据进行预处理,如数据清洗、缺失值处理、数据转换等。可以使用R中的函数,如na.omit()、subset()、transform()等来完成这些操作。
  4. 散点图绘制:使用R中的绘图函数,如plot(),将土地覆盖数据绘制成散点图。可以选择合适的变量作为横轴和纵轴,以展示它们之间的关系。
  5. 添加标签和注释:根据需要,可以使用R中的函数,如text()、legend()等,为散点图添加标签和注释,以提供更多信息和解释。
  6. 结果展示:使用R中的函数,如dev.off(),将散点图保存为图片或直接在R环境中展示。

在腾讯云的生态系统中,可以使用以下相关产品和服务来支持土地覆盖计算和散点图绘制:

  1. 腾讯云计算服务:提供弹性计算、存储、网络等基础设施服务,可用于处理大规模的土地覆盖数据和计算需求。
  2. 腾讯云数据库:提供多种数据库服务,如云数据库MySQL、云数据库MongoDB等,可用于存储和管理土地覆盖数据。
  3. 腾讯云人工智能服务:提供多种人工智能相关的服务,如图像识别、自然语言处理等,可用于对土地覆盖数据进行分析和处理。
  4. 腾讯云物联网平台:提供物联网设备接入、数据采集、数据存储等服务,可用于获取土地覆盖数据的实时信息。
  5. 腾讯云开发者工具:提供丰富的开发工具和SDK,可用于快速开发和部署土地覆盖计算和散点图绘制的应用程序。

请注意,以上仅为示例,具体的产品和服务选择应根据实际需求和情况进行评估和决策。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【GEE】9、在GEE中生成采样数据【随机采样】

    有充分证据表明,食草动物主要以麋鹿为食,会对白杨的再生率产生负面影响,因为白杨倾向于在大型单型林分中生长。因此,这些林分中的白杨再生率可以决定下层的组成。从一个地区排除麋鹿、鹿和奶牛放牧对白杨再生有可观察到的影响,但在了解白杨林下的存在如何影响从初级生产者到大型哺乳动物的地区的整体生物多样性方面所做的工作有限。在本模块中,我们将使用多个数据集和一米分辨率的图像来开发用于理论实地调查研究的采样位置。我们还将建立一个存在/不存在数据集,我们可以用它来训练一个特定区域的白杨覆盖模型。创建这样一个模型的过程可以在模块 7中找到。

    04

    GEE好文推荐——利用样本点迁移方法快速实现全球范围内1984年至今基于Landsat影像的土地分类

    在本研究中,我们在 GEE 中实施了射频分类器,利用 Landsat-8 和 Sentinel-2 数据集对 2022 年植被生长季节的不同空间尺度进行了时间序列土地分类。我们的首要目标是利用多源遥感变量构建的不同土地分类模型,为时间序列数据集建立一个高效、准确和通用的土地分类模型,并根据未发生土地分类变化的样本点图像值差异,确定土地分类样本点和迁移阈值。我们的目标是 (1) 确定基于土地分类无变化的样点迁移阈值;(2) 根据阈值分析使用陆地卫星遥感图像和高精度哨兵图像的 36 年时间序列制作的土地分类模型的准确性;(3) 确定基于多源遥感变量不同组合的最佳射频土地分类模型,并比较图像分辨率对分类准确性的影响。

    01

    GLanCE30 v001全球土地分类数据集,分辨率 30 m

    NASA 制作用于研究环境的地球系统数据记录 (MEaSURE) 全球土地覆盖绘图和估算 (GLanCE)每年30米(m)版本1数据产品提供来自Landsat 5专题制图器(TM)、Landsat 7增强型专题制图器Plus( ETM+)和 Landsat 8 运行陆地成像仪 (OLI)。这些地图为用户社区提供土地覆盖类型、土地覆盖变化、表征每个像素绿化程度和季节性的指标以及变化幅度。 GLanCE 数据产品将使用一组七个大陆网格提供,这些网格使用参数化的兰伯特方位角等面积投影,以最大限度地减少每个大陆的失真。目前,北美和欧洲大陆均可用。该数据集可用于广泛的应用,包括生态系统、气候和水文建模;监测陆地生态系统对气候变化的反应;碳核算;和土地管理。

    01

    Google Earth Engine——北纬85度和南纬60度之间所有地区到最近的人口密集区的迁移时间数据集

    This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometer or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between the University of Oxford Malaria Atlas Project (MAP), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands. The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a “friction surface”, a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest city (by travel time). Cities were determined using the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modeled shortest time from that location to a city.

    01

    基于多源数据融合方法的中国1公里土地覆盖图(2000)

    基于多源数据融合方法的中国1公里土地覆盖图(2000)在评价已经有土地覆盖数据的基础上,将2000年中国1:10万土地利用数据、中国植被图集(1:100万)的植被型分类、中国1:10万冰川图、中国1:100万沼泽湿地图和MODIS 2001年土地覆盖产品(MOD12Q1)进行融合,基于最大信任度原则进行决策,产生了新的IGBP分类系统的2000年1KM中国土地覆盖数据。前言 – 人工智能教程 新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。新的土地覆盖数据在保持了中国土地利用数据的总体精度的同时,补充了中国植被图中对植被类型及植被季相的信息,更新了中国湿地图,增加了中国冰川图最新信息,使分类系统更加通用。

    01

    精度与速度的双赢,很难拒绝 | SpectralMamba用动态卷积学习动态 Mask ,将 Mamba速度问题卷服!

    高光谱(HS)成像技术的迅速发展显著增强了人类观察现实世界的能力,细节和深度都得到了提升[1]。与传统摄影仅在有限的几个宽光谱带内获取图像不同,高光谱成像系统通过测量每个像素的能量光谱,前所未有的同时实现了空间和光谱信息的捕获。生成的三维(3-D)高光谱数据立方体包含了每个空间分辨率元素的近乎连续的光谱轮廓,从而使得对成像内容的量化、识别和认定的准确性得到提高。得益于航空航天和仪器技术的最新进展[2],高光谱成像已逐渐成为遥感(RS)不可或缺的工具。在其广泛的应用中,高光谱图像分类在从环境监测、城市规划到军事科学等众多领域引起了广泛关注,展示了其潜在的普遍性和交叉重要性[3, 4]。

    01

    2017-2023年 ESRI 10m 年度土地覆被图、数据集

    ESRI 10m 年度土地覆被图(2017-2023) 土地利用和土地覆被 (LULC) 年度全球地图时间序列已更新至 v3 版,包含 2017-2023 年全球 10 米土地覆被。这些地图来自欧空局哨兵-2 10 米分辨率图像。每张地图都是全年 9 个等级的 LULC 预测值的合成,以便生成每年的代表性快照。该数据集由 Impact Observatory 生成,他们使用了数十亿人类标记的像素(由国家地理学会策划)来训练土地分类的深度学习模型。全球地图是将该模型应用于行星计算机上的哨兵-2 年度场景集合而生成的。经评估,每张地图的平均准确率超过 75%。这些数据集由 Impact 天文台制作,并由 Esri 授权从Impact 天文台获取。

    01

    好文速递:森林退化造成的碳损失超过了巴西亚马逊地区森林砍伐造成的碳损失

    摘要:地上生物量(AGB)和森林面积的时空动态会影响巴西亚马逊河的碳循环,气候和生物多样性。在这里,我们通过分析基于卫星的年度AGB和森林面积数据集来调查AGB和森林面积的年际变化。我们发现,2019年的森林总面积损失比2015年更大,这可能是由于最近放松森林保护政策所致。但是,2019年的AGB净亏损比2015年减少了三倍。在2010–2019年期间,巴西亚马逊的累计总亏损为4.45 Pg C,而总收益为3.78 Pg C,导致AGB净亏损为0.67 Pg C.森林退化(73%)对总AGB损失的贡献是森林砍伐(27%)的三倍,因为面积退化的程度超过了森林砍伐的程度。这表明森林退化已成为驱动碳损失的最大过程,应成为更高的政策重点。

    04

    全球地表覆盖global land 30数据集

    全球地表覆盖数据(GlobeLand30)是中国研制的30米空间分辨率全球地表覆盖数据,2014年已发布2000和2010版,自然资源部于2017年对该数据进行了更新,形成了2020版。 GlobeLand30中包括10个种类,分别为耕地、林地、草地、灌木地、湿地、水体、苔原、人造地表、裸地、冰川和永久积雪。GlobeLand30研制所用的分类影像主要为30米多光谱影像,包括Landsat系列的TM5、ETM+、OLI多光谱影像和中国环境减灾卫星HJ-1多光谱影像,2020版数据还使用了16米的GF1多光谱影像。在影像无云(少云)前提下,优先选择生产基准年或更新年度±2年内植被生长季的多光谱影像,影像获取困难地区则放宽获取时间,从而保证影像的全球覆盖度。前言 – 人工智能教程 GlobeLand30 V2010数据精度评价由同济大学牵头完成。从全球853幅数据中抽取80个图幅,布设超过15万个检验样本,得出GlobeLand30 V2010数据的总体精度为83.50%,Kappa系数0.78。GlobeLand30 V2020数据精度评价由中国科学院空天信息创新研究院牵头完成。基于景观形状指数抽样模型进行全套数据布点,共布设样本超过23万个。得出GlobeLand30 V2020数据的总体精度为85.72%,Kappa系数0.82。

    01
    领券