首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

子集数据/基于前7个字母提取数据

子集数据(Subset Data)是一种数据缩减技术,用于减少数据集的大小,同时保留数据集中的大部分有用信息。这种技术通过将数据集划分为多个子集,然后对每个子集进行单独的分析,从而减少数据集的大小,加快数据分析速度,提高数据处理的效率。

子集数据的应用场景非常广泛,包括数据挖掘、机器学习、自然语言处理、图像处理、生物信息学等。在这些领域中,数据往往非常庞大,而子集数据技术可以帮助我们快速地处理这些数据,提高数据处理的效率。

在推荐系统中,子集数据也可以发挥重要的作用。例如,在推荐系统中,我们可以将用户划分为多个子集,然后对每个子集进行单独的分析,从而提高推荐精度。此外,子集数据也可以用于数据压缩、数据存储、数据传输等方面。

在云计算领域,子集数据可以用于云原生、容器化、微服务、DevOps等场景中。例如,在云原生场景中,子集数据可以用于服务编排、服务治理、服务监控等方面。在容器化场景中,子集数据可以用于容器编排、容器管理、容器监控等方面。在微服务场景中,子集数据可以用于微服务架构设计、微服务开发、微服务测试等方面。在DevOps场景中,子集数据可以用于持续集成、持续交付、持续部署等方面。

总之,子集数据是一种非常重要的技术,在数据挖掘、机器学习、自然语言处理、图像处理、生物信息学、推荐系统、云计算、云原生、容器化、微服务、DevOps等场景中都有广泛的应用。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • J Cheminform.|基于子结构的神经机器翻译用于逆合成预测

    随着机器翻译方法的快速改进,神经机器翻译已经开始在逆合成设计中发挥重要作用,为目标分子找到合理的合成路径。以往的研究表明,利用神经机器翻译的序列到序列框架是解决逆合成设计问题的一种有前途的方法。这项工作中,研究人员使用一个无模板的序列到序列的模型将逆合成设计问题重构为语言翻译问题。该模型是以端到端和完全数据驱动的方式进行训练。与之前翻译反应物和产物的SMILES字符串的模型不同,研究人员引入了一种基于分子片段的新的化学反应表示方式。事实证明,新方法比目前最先进的计算方法产生了更好的预测结果。新方法解决了现有逆合成方法的主要缺点,如生成无效的SMILES字符串。此外,研究人员的方法比现有的方法产生更稳健的预测。

    03

    J.Cheminform| MACCS密钥:在逆合成预测中弥补SMILES的局限性

    今天给大家介绍的是韩国江原国立大学Umit V.等人在2021年发表的一篇名为“Substructure-based neural machine translation for retrosynthetic prediction”的文章。随着机器翻译方法的快速改进,神经网络机器翻译开始在逆合成规划中发挥重要作用。作者利用无模板的序列到序列模型,将逆合成规划问题重新转化为语言翻译问题,不像先前的使用SMILES字符串来表示反应物和产物的模型,作者引入了一种新的基于分子碎片的方法来表示化学反应,并使用古本系数进行结果评估。结果表明,与目前最先进的计算方法相比,该方法能获得更好的预测结果。该方法解决了现有的逆合成方法产生无效SMILES字符串等主要缺陷。具体来说,我们的方法预测高度相似的反应物分子的准确率为57.7%。此外,作者的方法得到了比现有方法更稳健的预测。

    01

    干货 | 对端到端语音识别网络的两种全新探索

    AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。

    04

    博客 | 论文解读:对端到端语音识别网络的两种全新探索

    雷锋网 AI 科技评论按:语音识别技术历史悠久,早在上世纪 50 年代,贝尔研究所就研究出了可以识别十个英文数字的简单系统。从上世纪 70 年代起,传统的基于统计的 HMM 声学模型,N 元组语言模型的发明,已经使得语音识别技术可以在小规模词汇量上使用。在新世纪伊始,GMM-HMM 模型的序列鉴别性训练方法的提出又进一步提升了语音识别的准确率。最近 5-10 年间,随着深度学习的快速发展,算力的快速增长,数据量的急速扩张,深度学习开始大规模应用于语音识别领域并取得突破性进展,深度模型已经可以在干净标准的独白类音频上达到 5% 以下的错词率。此外,端到端的模型可以轻松的将各种语言揉合在一个模型中,不需要做额外的音素词典的准备,这将大大推动业界技术研究与应用落地的进度。

    03
    领券