首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    列存储中常用的数据压缩算法

    大家好,又见面了,我是你们的朋友全栈君。列存储,作为一种针对数据查询和数据分析设计的数据存储策略,在“大数据”越来越普及的今天可以说是相当地火热。相较于行存储,列存储的最大优势有二,其一就是查询涉及到数据库的哪几个列就读哪几个列,不读一点与查询不相关的列,大大减少了数据的读取,其二就是数据库数据分为多个独立的列来存储,相同数据类型的数据连续存储在一起,易于数据压缩,而这再次减少了数据的读取。以上正是列存储在处理数据查询和数据分析方面的天然优势,其中也有很多值得探讨的东西。关于前者,本博主涉其未深,不便胡说,倒是近日通过阅读些许文章晓得了几种列存中的数据压缩算法,可以写出来与众看客们分享一二三点。

    04

    Huffman算法压缩解压缩(C)

    Huffman压缩算法是一种基于字符出现频率的编码算法,通过构建Huffman树,将出现频率高的字符用短编码表示,出现频率低的字符用长编码表示,从而实现对数据的压缩。以下是Huffman压缩算法的详细流程: 统计字符频率:遍历待压缩的数据,统计每个字符出现的频率。 构建优先队列:将每个字符及其频率作为一个结点放入优先队列(或最小堆)中,根据字符频率构建一个按频率大小排序的优先队列。 构建Huffman树:不断地从优先队列中取出频率最小的两个结点,合并为一个新结点,并将新结点重新插入到优先队列中,直到队列只剩下一个结点,即Huffman树的根结点。 生成Huffman编码:通过遍历Huffman树,从根结点到每个叶子结点的路径上的左右分支分别对应编码0和1,根据路径生成每个字符的Huffman编码。 压缩数据:根据生成的Huffman编码,将待压缩数据中的每个字符替换为对应的Huffman编码,得到压缩后的数据。 存储压缩表:将字符与对应的Huffman编码关系存储为压缩表,以便解压缩时使用。 存储压缩数据:将压缩后的数据以二进制形式存储。 在解压缩时,需要根据存储的Huffman编码表和压缩数据,使用相同的Huffman树结构进行解码,将压缩数据解压缩成原始数据,并输出原始数据。 Huffman压缩算法的优势在于可以根据数据的特征自适应地确定编码,使得出现频率高的字符拥有更短的编码,从而实现高效的数据压缩。然而,Huffman算法对于小规模数据压缩效果不佳,适用于处理较大规模的数据压缩。

    01

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券