有一种简易压缩算法:针对全部为小写英文字母组成的字符串,将其中连续超过两个相同字母的部分压缩为连续个数加该字母,其他部分保持原样不变。 例如字符串aaabbccccd 经过压缩变成字符串 3abb4cd 请您编写解压函数,根据输入的字符串, 判断其是否为合法压缩过的字符串 若输入合法则输出解压缩后的字符串 否则输出字符串!error来报告错误
数据压缩是通过一系列的算法和技术将原始数据转换为更紧凑的表示形式,以减少数据占用的存储空间。数据解压缩则是将压缩后的数据恢复到原始的表示形式。
综上所述,ClickHouse提供多种压缩算法和压缩字典技术来节省存储空间。在选择压缩算法和压缩字典技术时,需要根据数据的特性、压缩率、压缩与解压缩速度以及查询性能等因素进行综合考虑。
压缩算法是一种通过减少数据量来节省存储空间或传输数据的技术。压缩算法可以分为两种类型:有损压缩和无损压缩。 有损压缩算法会牺牲一定的数据精度或质量,在压缩数据的同时丢失一些信息。这种算法适用于音频、视频等多媒体数据,例如JPEG和MP3等格式。 无损压缩算法则能够完全还原原始数据,不会造成数据丢失。这种算法适用于需要准确还原数据的场景,如文档、代码等,例如ZIP和GZIP等格式。 常见的压缩算法包括哈夫曼编码、Lempel-Ziv算法、Run-Length Encoding(RLE)等。这些算法通过不同的方式对数据进行编码和解码,以实现数据压缩和解压缩的目的。
《E往无前》系列将着重展现腾讯云大数据ES在持续深入优化客户所关心的「省!快!稳!」诉求,能够在低成本的同时兼顾高可用、高性能、高稳定等特性,可以满足微盟、小红书、微信支付等内外部大客户的核心场景需求。 E往无前 | 日志成本下降25%+!腾讯云大数据ES Lucene压缩编码深度优化大揭秘 导语:Lucene作为Elasticsearch的底层索引引擎,提供了灵活的数据检索能力。但在日志数据领域,Lucene现有的设计导致数据膨胀较为严重,本文介绍了关于Lucene底层文件格式的系统性优化思路。这些优化特
时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 256M,其他语言512M
Kafka 支持的压缩算法还挺多的,这一篇来站在Kafka的角度看一下压缩算法。就当前情况来说,支持GZIP、Snappy、LZ4 这三种压缩算法。具体是通过compression.type 来开启消息压缩并且设定具体的压缩算法。
大家好,又见面了,我是你们的朋友全栈君。列存储,作为一种针对数据查询和数据分析设计的数据存储策略,在“大数据”越来越普及的今天可以说是相当地火热。相较于行存储,列存储的最大优势有二,其一就是查询涉及到数据库的哪几个列就读哪几个列,不读一点与查询不相关的列,大大减少了数据的读取,其二就是数据库数据分为多个独立的列来存储,相同数据类型的数据连续存储在一起,易于数据压缩,而这再次减少了数据的读取。以上正是列存储在处理数据查询和数据分析方面的天然优势,其中也有很多值得探讨的东西。关于前者,本博主涉其未深,不便胡说,倒是近日通过阅读些许文章晓得了几种列存中的数据压缩算法,可以写出来与众看客们分享一二三点。
在 dotnet 可以使用 LZ4 这个无损的压缩算法,这个压缩算法的压缩率不高但是速度很快。这个库支持在 .NET Standard 1.6 .NET Core .NET Framework Mono Xamarin 和 UWP 运行
ClickHouse 是最近比较热门的用于在线分析处理的(OLAP)[^1]数据存储,与我们常见的 MySQL、PostgreSQL 等传统的关系型数据库相比,ClickHouse、Hive 和 HBase 等用于在线分析处理(OLAP)场景的数据存储往往都会使用列式存储。
(本文改自多媒体导论我课上做的演讲)转眼就暑假了,这一篇我在4月份准备写结果写了一半就坑到了现在,也是很真实。
【Android 内存优化】垃圾回收算法 ( 内存优化总结 | 常见的内存泄漏场景 | GC 算法 | 标记清除算法 | 复制算法 | 标记压缩算法 ) 介绍了 标记清除算法 , 复制算法 , 标记压缩算法 , 三种垃圾回收算法 ;
小 Q 想要给他的朋友发送一个神秘字符串,但是他发现字符串过于长了,于是小 Q 发明了一种压缩算法对字符串中重复的部分进行了压缩,对于字符串中连续的m个相同字符串S将会压缩为m|S,例如字符串ABCABCABC将会被压缩为[3|ABC],现在小 Q 的同学收到了小 Q 发送过来的字符串,你能帮助他进行解压缩么?
Huffman压缩算法是一种基于字符出现频率的编码算法,通过构建Huffman树,将出现频率高的字符用短编码表示,出现频率低的字符用长编码表示,从而实现对数据的压缩。以下是Huffman压缩算法的详细流程: 统计字符频率:遍历待压缩的数据,统计每个字符出现的频率。 构建优先队列:将每个字符及其频率作为一个结点放入优先队列(或最小堆)中,根据字符频率构建一个按频率大小排序的优先队列。 构建Huffman树:不断地从优先队列中取出频率最小的两个结点,合并为一个新结点,并将新结点重新插入到优先队列中,直到队列只剩下一个结点,即Huffman树的根结点。 生成Huffman编码:通过遍历Huffman树,从根结点到每个叶子结点的路径上的左右分支分别对应编码0和1,根据路径生成每个字符的Huffman编码。 压缩数据:根据生成的Huffman编码,将待压缩数据中的每个字符替换为对应的Huffman编码,得到压缩后的数据。 存储压缩表:将字符与对应的Huffman编码关系存储为压缩表,以便解压缩时使用。 存储压缩数据:将压缩后的数据以二进制形式存储。 在解压缩时,需要根据存储的Huffman编码表和压缩数据,使用相同的Huffman树结构进行解码,将压缩数据解压缩成原始数据,并输出原始数据。 Huffman压缩算法的优势在于可以根据数据的特征自适应地确定编码,使得出现频率高的字符拥有更短的编码,从而实现高效的数据压缩。然而,Huffman算法对于小规模数据压缩效果不佳,适用于处理较大规模的数据压缩。
看过很多压缩相关的技术文章,大家都在讲各种压缩算法的技术实现原理及各压缩算法之间的压缩率的对比,哪个压缩算法好等等。这些技术文章非常好,可以指引我们在技术上不断钻研。本文将从另外一个大家讲的还比较少的角度,和大家一起探讨下如何在产品中使用好压缩算法。
无论使用何种编程语言,json格式的数据已被广泛应用,不论是数据的传输还是存储,在很多应用场景下,你可能想进一步地压缩JSON字符串的长度,以提升传输效率,如果你使用的是nosql数据库,你可能想进一步的压缩json字符串的长度来节省你的存储空间,接下来,我将介绍一下目前最常用的json数据压缩技术(CJSON和HPack)的实现
来源:esingchan - 博客园 链接:www.cnblogs.com/esingchan/p/3958962.html(点击尾部阅读原文前往) 最近自己实现了一个ZIP压缩数据的解压程序,觉得有必要把ZIP压缩格式进行一下详细总结,数据压缩是一门通信原理和计算机科学都会涉及到的学科,在通信原理中,一般称为信源编码,在计算机科学里,一般称为数据压缩,两者本质上没啥区别,在数学家看来,都是映射。 一方面在进行通信的时候,有必要将待传输的数据进行压缩,以减少带宽需求;另一方面,计算机存储数据的时候,为了减少
HTTP压缩是指web服务器和浏览器之间压缩传输请求响应结果的方法,通过采用通用的压缩算法,将数据包压缩后进行传输,从而提升页面加载速度,给用户一个更好的体验。
近日,在了解 @vue/repl 相关内容,其通过 URL 进行数据存储,感觉思路惊奇,打开了新方式。
对于列压缩选项,PostgreSQL 14提供了新的压缩方法LZ4。与TOAST中现有的PGLZ压缩方法相比,LZ4压缩更快。本文介绍如何使用整个选项,并和其他压缩算法进行性能比较。
目前大多数缓存框架都是用Java序列化的方式实现的持久化存储,我们自己公司的项目也是这么做的,功能全面而且效率也高, 使用起来得心应手,但是有一个小问题,如果数据结构发生变化,尤其是原字段的数据类型发生变化,在加载缓存时会出现异常,即便写了序列号也没有用。还有一个小问题就是存储文件稍微有一点大,于是在和同事交流过程中我有了一个新想法,能不能用json实现缓存? 我当时大致的思路是这样的:
本文共2600字,建议阅读9分钟。 如果能物理地减少数据存储量,也就自然而然地减少了外存访问量。
广告素材中,图片类素材都是以静态图片为主,缺少交互感和吸引力,可能导致点击率偏低。为此,腾讯广告多媒体AI团队使用AI技术在图片焦点区域生成动态效果,以提升点击率。在落地页中,如果是以视频的形式不但交互过重,并且影响页面加载速度。因此,需要在保证展示效果的前提下使用压缩比尽可能大的GIF来做落地页展示。
数据压缩是保留相同或绝大部分数据前提下减小文件大小的过程。它的原理是消除不必要的数据或以更高效的格式重新组织数据。在进行数据压缩时,你可以选择使用有损方法或无损方法。有损方法会永久性地擦除掉一些数据,而无损方法则能保证持有全部的数据。使用哪类方法取决于你要让你的文件保持多大的精准度。
这次为大家带来的是另外一个 PHP 的压缩扩展,当然也是非常冷门的一种压缩格式,所以使用的人会比较少,而且在 PHP 中提供的相关的函数也只是对字符串的编码与解码,并没有针对文件的操作。因此,就像 Bzip2 一样,我们也可以用它来进行一些加密传输的操作。
数据结构从逻辑结构上可以分为:集合、线性表、树、图 集合中常用的数据结构是背包等。 线性表包括栈、链表、队列等。 树包括堆、二叉树、哈夫曼树等。 图包括有向图、无向图、最小生成树、最短路径等(就职于高德地图的算法工程师,图的知识必须完全掌握(ง •̀_•́)ง)。 背包、栈、链表和队列在之前的一篇博文《基础大扫荡——背包,栈,队列,链表一口气全弄懂》中介绍了一下。二叉树和堆在《面向程序员编程——精研排序算法》中的堆排序部分仔细介绍过。 图若在未来有机会用到我会去研究一下,目前为止我的经历中用到图结构
本来这份ppt是打算在公司的FEConf大会上展示的,但是年初的新型冠状病毒疫情把这事儿给鸽了。话说16XX年春天,伦敦地区也爆发了一场惨绝人寰的鼠疫,然后牛顿大神在家隔离时宅出了包括二项式定理和微积分在内的一系列顶级学术成果,进而导致了人类第一次理论物理大爆发...
作者:勇哥。已获作者授权发布。 原文地址: https://blog.csdn.net/qq646350979/article/details/79841556 前言 无论使用何种编程语言,json格式的数据已被广泛应用,不论是数据的传输还是存储,在很多应用场景下,你可能想进一步地压缩JSON字符串的长度,以提升传输效率,如果你使用的是nosql数据库,你可能想进一步的压缩json字符串的长度来节省你的存储空间,接下来,我将介绍一下目前最常用的json数据压缩技术(CJSON和HPack)的实现(文章最后有
这些数据类型在ClickHouse中具有不同的存储大小和特定的应用场景,用户可以根据需求选择合适的数据类型来存储和处理数据。
上周部门会议上讨论的一个议题是如何节省Redis内存空间,其中有个小伙伴提到可以从压缩字符串入手,我觉得这是一个可以尝试的思路。因为有时候我们存在Redis中的值比较大,如果能对这些大字符串进行压缩,那么节省的内存空间还是很可观的。接下来将介绍几种常见的数据压缩算法,供大家参考。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
snappy算法是google开源的。该包是google使用go语言来实现的。项目地址如下:
Protocal Buffers是google推出的一种序列化协议。由于它的编码和解码的速度,已经编码后的大小控制的较好,因此它常常被用在RPC调用中,传递参数和结果。比如gRPC。
0写在前面 web前端在越来越多的Hmtl5游戏 web App的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及Html5线上有损图像压缩,无损数据压缩方案等运用。 web项目需求中有很多资源压缩优化有很多不错的方案 比如针对文本js的compress 以及服务器gzip,比如sprite雪碧图+png压图。 在越来越多的Hmtl5游戏 webApp的复杂的web运用中需要更多有针对的压缩方案。 本文抛砖引玉,聊一下基于前端javascript以及H
本文首发于京东零售平台公众号,https://mp.weixin.qq.com/s/uzuz7rqctQ-bjdRcf1tO9g
“智能压缩”按照又拍云的说法是,同时支持 Gzip 和 Brotli 压缩算法。根据用于浏览器开启自动选择不同压缩方式。
数据库存储引擎采用的技术会对数据库的某些应用场景的性能产生十分重要的影响。可能很多朋友并不关注这一点,也没有遇到过那些网上所说的问题,这可能你的应用场景并没有遇到哪种情况,或者说你的系统的规模还不大,硬件性能能够弥补这方面的不足。不过作为数据库从业人员,不管是应用架构师、研发人员还是DBA最好还是了解一些这方面的知识,从而避免此类问题发生或者当遇到类似性能问题的时候能够快速定位问题。
脑图暂时地址:https://twilight-fanyi.gitee.io/mind-map/
列表对象是 Redis 中 5 种基础数据类型之一,在 Redis 3.2 版本之前,列表对象底层存储结构有两种:linkedlist(双端列表)和 ziplist(压缩列表),而在 Redis 3.2 版本之后,列表对象底层存储结构只有一种:quicklist(快速列表),难道通过精心设计的 ziplist 最终被 Redis 抛弃了吗?
最近研究了一下脚本语言的混淆方法,比如 python,javascript等。脚本语言属于动态语言,代码大多无法直接编译成二进制机器码,发行脚本基本上相当于暴露源码,这对于一些商业应用是无法接受的。因此对脚本代码进行加固,成为很多应用的首选。代码加固的一项措施是代码混淆,增加逆向人员阅读代码逻辑的难度,拖延被破解的时间。
参考链接:https://www.cnblogs.com/yrxing/p/14464799.html
面试中,redis也是很受面试官亲睐的一部分。我向在这里讲的是redis的底层数据结构,而不是你理解的五大数据结构。你有没有想过redis底层是怎样的数据结构呢,他们和我们java中的HashMap、List、等使用的数据结构有什么区别呢。
这几天看到一个大厂的面试题,感觉比较有意思,是学习递归的好题目,下面和大家分享一下这道题的解法。
1994 年,Michael Burrows 和 David Wheeler 发明了Burrows-Wheeler Transform算法,并以他们的姓名命名。在读《Universal losslessdata compression algorithm》的时候,我也深刻体会到了文中对该算法精确的描述,以至于一半以上的内容都是讲它以及如何改进优化BWT的。
霍夫曼压缩算法 概述 霍夫曼压缩算法的主要思想是用较少的比特表示出现频率较高的字符,用较多的比特表示出现频率较低的字符。如下图所示, 实现 ①读入完整的输入流,并转化为字符数组。 ②计算每个字符
面对快速增长的在线数据,尤其在例如订单、交易、日志等场景,数据往往多呈现为流水型特征,写入一段时间后即不会再次访问或更新;对访问频率很低甚至为0的数据,其占用的在线业务库固态存储空间,造成了大量硬件资源浪费,堆高企业的IT成本。同时,传统数据归档方案往往是业务研发或 DBA 采用脚本或简单的同步工具进行,难以在并发和效率上有效控制,很容易对在线数据库产生影响,严重的甚至导致生产数据误删事故。
在日常开发过程中,为了保证程序的安全性以及通信的安全,我们必不可少的就会使用一下加密方式,如在调用接口的时候使用非对称对数据进行加密,对程序中重要的字符串进行加密,防止反编译查看等,今天我们就来看一下各种的加密方式,
Accept-Encoding和Content-Encoding是HTTP中用来对采用何种压缩格式传输正文进行协定的一对header。工作原理如下:
什么是Brotli压缩?【文章来源:https://www.zouaw.com/4358.html】
领取专属 10元无门槛券
手把手带您无忧上云