首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    5 | PyTorch加载真实数据:图像、表格、文本,one-hot

    在实际的工作中,常见的机器学习处理的数据大概分成三种,一种是图像数据,图像数据通常是RGB三通道的彩色数据,图像上的每个像素由一个数值表示,这个其实比较容易处理;一种是文本数据,文本数据挖掘就是我们通常说的自然语言处理,文本数据首先是非结构化的,同时我们需要把文本数据表示成数值,这得花一些功夫;还有一种就是结构化的数据,结构化数据比如说一张excel数据表,每一列代表一个特征,具体到它的值可能是数值也可能是文本,可能是连续的也可能是非连续的,这种数据我们也需要进行转化,但是通常来说比自然语言好处理一点。

    02

    详解GloVe词向量模型[通俗易懂]

    词向量的表示可以分成两个大类1:基于统计方法例如共现矩阵、奇异值分解SVD;2:基于语言模型例如神经网络语言模型(NNLM)、word2vector(CBOW、skip-gram)、GloVe、ELMo。   word2vector中的skip-gram模型是利用类似于自动编码的器网络以中心词的one-hot表示作为输入来预测这个中心词环境中某一个词的one-hot表示,即先将中心词one-hot表示编码然后解码成环境中某个词的one-hot表示(多分类模型,损失函数用交叉熵)。CBOW是反过来的,分别用环境中的每一个词去预测中心词。尽管word2vector在学习词与词间的关系上有了大进步,但是它有很明显的缺点:只能利用一定窗长的上下文环境,即利用局部信息,没法利用整个语料库的全局信息。鉴于此,斯坦福的GloVe诞生了,它的全称是global vector,很明显它是要改进word2vector,成功利用语料库的全局信息。

    02
    领券