为了推动 AI 技术的应用创新,促进人工智能领域的学术交流、人才培养,打造人工智能的人才交流平台与产业生态圈,中国人工智能学会联合杭州市余杭区人民政府联合发起了首届全球人工智能技术创新大赛,并得到了阿里云、OPPO 等头部科技企业的积极参与和支持。阿里云天池平台为本次大赛提供平台和算力支撑。 AI青年说是大赛主办方为提升青年开发者对 AI 的认识而主办的系列活动,该活动邀请知名青年学者,探讨理论研究与应用实践中的热点话题。4月26日,AI青年说将迎来第二期直播活动,主题为「如何摘取 AI 皇冠上的 NL
Dialogue System是一个分支式的统一会话系统。它不需要任何脚本,但它是设计为易于由程序员扩展。
机器之心专栏 作者:李永彬、惠彬原、黄非 团队:达摩院-自然语言-对话智能团队 如何将人类先验知识低成本融入到预训练模型中一直是个难题。达摩院对话智能团队提出了一种基于半监督预训练的新训练方式,将对话领域的少量有标数据和海量无标数据一起进行预训练,从而把标注数据中蕴含的知识注入到预训练模型中去,打造了 SPACE 1/2/3 系列模型。 SPACE-1:注入对话策略知识,AAAI 2022 长文录用; SPACE-2:注入对话理解知识,COLING 2022 长文录用,并获 best paper award
在过去的20年中,互联网,把人们带入了一个全新的时代。在这个全新的时代,我们创造出了四种连接方式:一是人和物品之间的连接,二是人与人之间的连接,三是人和信息之间的连接, 四是人和设备之间的连接。连接不是目的,它只是为交互提供相应的服务。对我们每一个人来说,最友好最自然的交流方式就是采用自然语言的方式进行交互。通过自然语言的方式进行交互完成对话系统的设计与实现。
12月11日,2021年腾讯犀牛鸟精英科研人才培养计划正式对外发布。计划截止申报时间为2021年1月28日24:00。 本年度精英科研人才计划将延续人工智能领域顶尖科研人才培养,发布包含机器人、AI医疗、量子计算、智慧城市等12个前沿热议方向,71项研究课题。入选学生将由校企导师联合制定专属培养计划,并获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将为学生搭建线上和线下学习、交流平台,帮助学生挖掘更多潜能。 本期小编整理了该计
梦晨 发自 凹非寺 量子位 | 公众号 QbitAI ChatGPT火爆,也让更多人看到对话式AI的商业价值。 根据艾瑞咨询发布的《2022年中国对话式AI行业发展白皮书》,2021年对话式AI的市场规模为45亿元,带动规模126亿元。 在MEET2023智能未来大会上,中关村科金技术副总裁张杰分享了关于对话式AI在企业服务中的一些观点和经验。 中关村科金以AI+数字化营销·运营·服务为引擎,为500余家金融、零售、政务、医疗、互联网、智能制造等行业头部企业提供了数字化解决方案。 为了完整体现张杰的分享及
“ 精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将引进沟通技巧、商业分析、创新思维等定制课程,定期举办线上线下交流活动,全面提升学生综合素质。入选学生还将获得线上实名社群平台“十分精英圈”的在线访问权限,结识志同道合的科研伙伴,获取业界信息及资源。 ” 今年共有10大方向 81个子课题供大家选择 总有一
机器之心转载 公众号:Trio 如何评测语义领域相关技术是大家共同关注的。三角兽公司基于多年理论和相关技术实践的经验,针对语义领域的 4个方向技术,将会发表一系列解读文章。本篇文章由三角兽 CEO Z
TEG数据平台部联合AiLab、Ai平台部,结合语音合成、语音识别、机器人问答、大数据能力等前沿性、高复用性的功能模块构建腾讯小知智能机器人产品,支持问答、业务办理、营销推广、回访调研、通知提醒等应用场景,降低人工服务成本、提升服务质量和转化效率,目前已在多个领域落地,如公安、零售、教育和地产等。
本文来自德国Fraunhofer协会IAIS研究所的研究科学家Michael Galkin,他的研究课题主要是把知识图结合到对话AI中。
如果说自然语言处理可被誉为“人工智能皇冠上的明珠”,那么对话系统就是“自然语言处理皇冠上的明珠”。其中以苹果SIRI、Google Assistant为代表的任务型对话系统尤为学术界和产业界所关注。然而,构建一个任务型对话系统依赖于大规模的标注数据,这为系统如何快速迁移到新的领域、新的语言和新的任务都带来了极大的挑战。
TEG数据平台部联合AiLab、Ai平台部,结合语音合成、语音识别、机器人问答、大数据能力等前沿性、高复用性的功能模块构建腾讯小知智能语音机器人产品,支持问答、业务办理、营销推广、回访调研、通知提醒等应用场景,降低人工服务成本、提升服务质量和转化效率,目前已在多个领域落地,如公安、零售、教育和地产等。
机器之心原创 作者:彭君韬(Tony) 在网络视频对话里,一个有些腼腆的男生正面对着摄像头做一场网络工作面试的培训,摄像头的另一端则是一个模拟系统。这个系统观察着男生的举止、面部表情和声音变化,并对他
精英人才培养计划是一项校企联合人才培养项目,入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养。培养期间,学生将获得3个月以上到访腾讯开展科研访问的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将为学生搭建线上和线下学习、交流平台,帮助学生挖掘更多潜能。学生通过“十分精英圈”线上平台,随时获取前沿技术资讯、沉淀科研收获与心得;通过“智学研讨会”及“智享交流会”等线下平台,积极参与海内外顶级学术会议及学术专家交流活动;通过“精英研学营”进阶平台,对话产业
导语:读博六年,两次换博士导师、差点交不上学费,还能顺利毕业、成为所在领域的青年佼佼者之一,俞舟不简单。
陶建华, 巫英才, 喻纯, 翁冬冬, 李冠君, 韩腾, 王运涛, 刘斌. 2022. 多模态人机交互综述. 中国图象图形学报, 27(6): 1956-1987
对话系统是一个庞大的系统,涉及的问题很多,本文主要讲解隐马尔可夫模型(Hidden Markov Model,HMM)在对话管理(Dialog Management,DM)中的应用。DM在对话系统中的作用是维护对话状态并根据当前对话状态选择下一步合适的动作。 在贝壳找房APP中,客户和经纪人的对话过程可以看作是一个时间序列。在对话过程中,经纪人需要基于当前的对话状态对客户的消息作出合适的回应,即选择合适的动作。因此,经纪人的动作决策是一个基于时间序列的问题。而HMM模型是比较经典的解决序列问题的机器学习模型,所以,在DM的动作决策问题上首先尝试了HMM模型。本文将结合实际案例从理论推导、模型构建、实验分析三个方面对HMM模型在DM中的应用进行详细解析。
编者按:邓力博士原为加拿大滑铁卢大学教授,1999 年加入微软,2016 年起担任微软首席人工智能科学家,负责微软深度学习技术中心应用趋向的深度学习研究。 在上周的 AI Frontiers 会议上,邓力博士为参会嘉宾做了口语对话系统的专题演讲。AI 科技评论与会记者将现场演讲记录下来,结合 PPT 为大家整理出这份演讲实录。此次邓老师介绍了口语对话系统的分类,三代演变史,以及三大研究前沿领域,可谓干货满满。NLP 领域的童鞋们不可错过。 邓力: 今天,我想讲一讲口语对话系统(Spoken Dialog
新意图发现(NID)又叫做新意图挖掘,其旨在从用户对话中发现新的意图类别,以扩展对话系统支持的意图类。这是发展和增强实用对话系统的关键任务。虽然说它对对话系统建设非常重要,但这个问题并没有在学术研究中进行充分探讨。为此今天给大家分享得这篇文章,针对新意图发现中语义话语表征、话语聚类这两大问题。给出了新得解决方案。实验结果表明:本文方法在无监督和半监督场景下都大大优于最先进的方法。
随着人工智能时代的到来,大模型的技术日新月异,我们不仅仅满足于文字之间的交互,希望能够有更近一步的交流。既然现在文字已经能够很好的模拟人类了,那随之而来的,是不是我们能够通过模拟人类交流的方式来交互。
导读:本次分享的主题为人机对话技术研究进展与思考。主要梳理了我们团队近两年的工作,渴望可以通过这样的介绍,能给大家一个关于人机对话 ( 包括它的科学问题和应用技术 ) 方面的启示,帮助我们进行更深入的研究和讨论。主要包括:
机器之心报道 编辑:杨德泽 在对谈中,俞舟不像其他创业者那样大谈 ChatGPT 对于行业的巨大影响力,她更加关注产品、更加关注使用产品的人,她不相信 AI 可以替代人类,而是帮助人类提升技能。 在俞舟开始她的对话系统创业的时候,大模型的热潮还没有到来,她只是认准了要做一个好产品。在公众都对于大模型的能力惊叹不已的时候,俞舟认为,关键是产品和客户服务。 俞舟本科毕业于浙江大学竺可桢学院,在拿下了计算机和语言学双学位后赴美攻读 PhD,俞舟认为社交语言在人的日常交往中占了极大的比例,如果要打造一台能够与人进行
近日,谷歌软件工程师Abhinav Rastogi和工程主管Pranav Khaitan称在谷歌虚拟助手中,已经引入了新的方法,更好地支持新服务。
对话系统作为人机交互领域的重要研究方向,在现实生活和技术领域具有广泛的应用。它的重要性体现在以下几个方面。 首先,对话系统能够提供自然、直观的人机交互方式。传统的人机交互方式主要依靠键盘、鼠标等输入设备,但对于一些用户,使用自然语言进行对话更加便捷和直观。对话系统通过语音识别和自然语言处理技术,能够理解用户的语言输入,并以自然语言的形式回复用户,使用户能够像与人类对话一样与计算机交流。 其次,对话系统在实现智能个人助理、智能客服和虚拟人物等领域具有重要应用。智能个人助理可以帮助用户处理日常事务、提供个性化的推荐和建议,提升用户的生活品质。智能客服能够为用户提供实时的技术支持和服务,提高客户满意度。虚拟人物则能够与用户进行情感交流、提供娱乐和教育等功能。 此外,对话系统在知识获取和信息检索方面发挥着重要作用。对话系统可以与用户进行语义理解和意图识别,从海量的数据中提取有用的信息,为用户提供准确、实时的答案和解决方案。对话系统还可以通过与用户的对话交互,逐步获取并更新知识库,实现知识的持续积累和更新。 最后,对话系统的发展也推动了人工智能技术的进步。为了实现对话系统的自动化、智能化,需要运用自然语言处理、机器学习、深度学习等前沿技术。对话系统的研究和应用促进了这些技术的发展,提升了人工智能在其他领域的应用水平。
近年来,大语言模型(LLM)取得令人难以置信的进展,尤其是 OpenAI 推出的对话模型 ChatGPT,短短几个月席卷社会各个领域。没过多久,OpenAI 又发布大型多模态模型 GPT-4,其支持图像和文本输入,即便是手绘草图,GPT-4 也能将其转变成可运行的网站。 不仅如此,为了在对话系统中理解和生成图片,微软亚研曾提出一个名为 Visual ChatGPT 的系统,他们将 ChatGPT 和多个 SOTA 视觉基础模型连接,实现在对话系统中理解和生成图像。 最近一段时间,我们也见识到图像领域的快速
自动驾驶、元宇宙与人工智能三体合一。 作者 | 王玥 编辑 | 陈彩娴 “我很庆幸能陪在你身边,通过你的目光看世界(I'm so happy I get to be next to you and look at the world through your eyes.)。" 这是影片《Her》中的一句台词,由AI语音助手Samantha对男主角说出。这句话对于迷失在钢铁森林中,感到失落而无力的男主角来说是莫大的安慰。 Samantha是一款几乎万能的自我学习型操作系统。她能帮助男主角筛选出最优秀的信件,发
本地服务(黄页)微聊代运营模式是指人工客服代替58平台上的商家与C端用户IM沟通聊天以获取商机(如用户联系方式、细粒度需求信息等),再将商机转交给商家,促进商家成单。我们基于58AI Lab自研的灵犀智能语音语义平台构建了智能客服商家版,将其应用在微聊代运营场景下,通过人机协作模式提高商机获取效率,打造了黄页商家智能聊天助手。这里的人机协作模式先后经历了三个阶段:在早期机器人效果较一般时,机器人和人工客服分时工作,即人工客服不上班时才由机器人接待用户咨询。在经过优化机器人效果较优时,先机器人再人工,即当用户来咨询商家时,白天先由机器人接待,若机器人能够聊出商机则结束会话,若不能再转接人工客服,晚上使用纯机器人接待。在机器人效果和人工很接近甚至超过人工时,使用纯机器人接待,人工客服去从事其他更复杂的工作。2021年年初,黄页商家智能聊天助手被商业化,以“微聊管家”命名随会员套餐一起打包售卖给商家,全年共计服务了数万个商家,为公司创造收入超过五千万元。当前,机器人的商机转化率(聊出商机的会话数/总会话数)已达到了人工客服的98%水平,我们实现了纯机器人接待,节省了数十名客服人力。
作者:蒙 康 编辑:王抒伟 笔者在最近的研究中发现了一篇非常好的有关对话系统的论文,《A Survey on Dialogue Systems:Recent Advances and New Frontiers》,论文来自于京东数据团队,论文引用了近124篇论文,是一篇综合全面的介绍对话系统的文章,可谓是诚意满满,今天我们将其重点进行解读,以飨读者。 前言 1 拥有一个虚拟助理或一个拥有足够智能的聊天伙伴系统似乎是虚幻的,而且可能只在科幻电影中存在很长一段时间。近年来,人机对话因其潜在的潜力和诱人的商业
自然语言处理(NLP)在对话系统领域的应用越来越广泛,为人机交互提供了更智能、更自然的体验。本文将深入研究NLP在对话系统中的原理,介绍常见的技术方法,并提供一个基于Python和现代NLP库的简单实例,帮助读者更好地理解和应用这一领域的知识。
11月6日,腾讯智能对话平台产品团队在开发者大会动手实验室上,由腾讯高级工程师孙栎倩老师分享了在腾讯智能平台上操作机器人开发步骤:
对话系统是一种流行的自然语言处理(NLP)任务,因为它在现实应用中很有前途。这也是一项复杂的任务,因为许多NLP任务值得研究涉及。因此,就这一任务开展了大量的创作。由于他们出色的表现,他们中的大多数都是基于深度学习的。在本次调查中,主要关注基于深度学习的对话系统。
对话系统是自然语言处理的一个热门话题,而自然语言理解则是对话系统的关键组成部分,现有的很多自然语言理解工具往往以服务的方式获取(Google 的 API.ai, Facebook 的 Wit.ai 等),使用这些服务往往需要向服务提供商提供自己的数据,并且根据自己业务调试模型很不方便。本文为大家介绍了一种新方法,即如何基于 rasa 搭建一个中文对话系统。 在近期 AI 研习社举办的线上免费公开课上,来自北京邮电大学网络技术研究院的张庆恒分享了基于 rasa nlu 构建自己的自然语言理解工具,并结合 r
▊《人工智能:语音识别理解与实践》 俞栋 邓力 俞凯 钱彦旻 著 电子书售价:79.5元 2020年11月出版 本书是全面且深入介绍语音识别及理解相关技术细节的专著。 与我们在2014年出版的《解析深度学习:语音识别实践》相比,《人工智能出版工程 人工智能:语音识别理解与实践》在它的基础上做了大量改写,并对内容有大幅补充,详细总结了新的语音识别算法及应用技术以及在口语对话系统研究中基于深度学习的自然语言处理技术。 本书首先概要介绍语音识别、口语理解和人机对话的基本概念与理论:接着全面深入地依次详述传统声学模
在 2017 年底结束的第一届亚马逊 Alexa Prize 比赛上,由华盛顿大学博士生方昊担任领队的 Sounding Board 团队在全球上百支队伍中突出重围,一举夺得冠军。 亚马逊 Alexa Prize 比赛面向全球各地的学生,旨在创造一个能与人进行自然对话和互动的社交对话系统,为用户提供新鲜、有趣的对话体验。比赛分为初赛和决赛两个阶段,在初赛阶段,选手需要创造出一个社交对话系统,而在决赛阶段,他们会对系统进行不断改进。 据主办方亚马逊介绍,「通过比赛中学生们的创新工作,Alexa 的客户将会有全
选自GitHub 机器之心编译 参与:思源、刘晓坤 本文介绍了一个构建端到端对话系统和训练聊天机器人的开源项目 DeepPavlov,该开源库的构建基于 TensorFlow 和 Keras,并旨在推动 NLP 和对话系统的研究,提升复杂对话系统的实现和评估效果。机器之心简要介绍了该项目和基本技术,希望实现对话机器人的读者可进一步阅读原项目。 项目地址:https://github.com/deepmipt/DeepPavlov 这是一个开源的对话 AI 库,建立在 TensorFlow 和 Keras 上
【新智元导读】蚂蚁金服副总裁、首席科学家漆远博士在新智元2017开源·生态AI技术峰会上阐释了 AI 技术在金融场景中的应用和巨大价值。漆远特别强调了场景化对于 AI 技术的意义,并以智能客服、个性化产品和资讯推荐及保险等具体场景为例加以说明。特别地,漆远指出了当前 AI 技术应用中存在的一些挑战,富有借鉴意义。 “蚂蚁金服是一家技术驱动的公司,我们做的事情,是使 AI 技术成为普惠金融的支点。”蚂蚁金服副总裁、首席科学家漆远博士,在有中国“ AI 春节”之称的新智元2017开源·生态AI技术峰会上表示。
最近,人工智能领域的后起之秀Facebook着实火了一把。根据2017 年6 月17 日美国《大西洋月刊》的报道,Facebook人工智能实验室设计的两个聊天机器人在谈判的训练中,发展出了一种全新的、只有它们自己能够理解的语言。这一爆炸性的消息一时间引得各路媒体蜂拥而至,煞有介事地讨论着人工智能如何颠覆人类对语言的理解,进而联想到人工智能会不会进化为热映新片《异形:契约》中戴维的角色,人类的命运仿佛又被推上了风口浪尖。
AI 科技评论按:如今,已渗透到人类生活方方面面的对话 AI ,成为了连接人类与 AI 技术最紧密的一根纽带。然而,自然语言对话技术目前存在的难以克服的挑战,也常让对话 AI 在与人类的交互过程中发生一些令人啼笑皆非的故事。目前距离类人智能还差上那么一截的对话 AI,到底该如何寻求发展与突破?
作者:李航、吕正东、尚利锋 前言 我们在日常生活中经常使用自然语言对话系统,比如苹果Siri。现在的对话系统多数只能做单轮对话,可以帮助用户完成一些简单的任务,如问天气,查股票(如果做多轮对话,也是在单轮对话的基础上加一些简单处理)。实现这些自然语言对话系统的基本技术可以分为两大类,基于规则的和基于数据的。你也许想知道对话系统的基本原理是怎样的?特别是如何用数据驱动的方式构建一个对话系统? 最近基于数据的自然语言对话技术取得了突破性的进展。我们发现,利用深度学习和大数据,可以很容易地构建一个单
选自sigirdawnet 作者:Wenjie Wang等 机器之心编译 参与:Panda 目前大多数基于生成的对话系统都会有很多回答让人觉得呆板无趣,无法进行有意思的长时间聊天。近日,山东大学和清华大学的研究者联合提出了一种使用深度模型来对话题进行延展和深入的方法 DAWnet。该方法能有效地让多轮对话系统给出的答复更加生动有趣,从而有助于实现人与机器的长时间聊天对话。机器之心对该研究论文进行了摘要编译。此外,研究者还公布了他们在本论文中所构建的数据集以及相关代码和参数设置。 论文、数据和代码地址:htt
随着智能化产品深入生产生活,智能对话应用需求爆发,像小布、小度、小爱、天猫精灵等智能语音助手、智能家居、智能机器人等产品备受终端用户欢迎;像智能客服等产品则是当下企业必选的营销工具。如今企业和用户的多样化需求,也对智能对话技术提出了许多挑战,比如开放域多轮、多模态融合、拟人化情感等等。 于是近几年,工业界陆续提出了“对话即服务”、“对话即平台”等概念,越来越多的国内外厂商开始深度投入到智能对话技术的探索与研发中。包括最近爆火的 ChatGPT,更是离不开智能对话技术。 然而,智能对话是一个对技术水平要求较高
导读:来自微软研究院的高剑锋, Michel Galley ,以及来自 Google的李力鸿, 在今年的7月8日的SIGIR 2018, 以及7月15日的 ACL2018上,做出关于神经网络方法在对话系统中的应用的报告。
任务型对话系统可以用来帮助用户完成订购机票、餐厅预订等业务,越来越受到研究者的关注。近几年,由于序列到序列(sequence-to-sequence)模型和记忆网络(memory-network)的强大建模能力,一些工作直接将任务型对话建模为端到端任务型对话任务。如图一所示,输入输出定义如下:
在日常工作中,Excel 表格随处可见;在 APP 或网页中,表格是清晰友好的信息传递方式;在企业中,关系型数据库无所不在。由于表格数据结构清晰、易于维护,并且对人类理解和机器理解都比较友好,表格 / 关系型数据库是各行各业应用最普遍的结构化知识存储形式。 但在表格知识的查询交互中,门槛却不低:对话系统或搜索引擎并不能很好地将表格知识作为答案查询出来,而关系型数据库的查询更需要专业技术人员撰写查询语句(如 SQL 语句)来完成,对大多数用户来讲门槛更高。在这种背景下,表格问答技术(TableQA)通过将自然
AI 科技评论按:以微软小冰为代表的聊天机器人已经渗透到我们的日常生活中,虽然小冰会卖萌懂幽默,但距离真正的共情、理解人类的情绪还是有一定的距离。清华大学计算机系朱小燕、黄民烈老师团队今年的一项研究工
随着对话系统的不断发展和成熟,如何评价对话系统的回复质量,成为了一个新的研究方向。
情感分析是一种自然语言处理技术,旨在识别和理解文本中表达的情感、情绪和情感倾向。它利用计算机算法和模型来分析文本中的情感表达,以确定文本的情感状态,例如正面、负面或中性。情感分析可以帮助我们理解人们在文本中表达的情感态度,从而揭示用户对产品、服务、事件或主题的情感倾向和观点。 情感分析在自然语言处理领域具有重要性和广泛应用。首先,情感分析可以帮助企业了解用户对其产品和服务的情感反馈。通过分析用户在社交媒体、在线评论和调查问卷中的情感表达,企业可以了解用户对其产品的喜好、满意度和不满意度,从而进行改进和优化。 其次,情感分析在舆情监测和品牌管理中发挥关键作用。通过分析公众对特定事件、品牌或产品的情感反馈,可以及时了解公众对品牌形象的看法,从而进行舆情应对和品牌形象的管理。此外,情感分析在社交媒体挖掘、市场调研和消费者洞察方面也具有广泛的应用。通过分析用户在社交媒体平台上的情感表达,可以了解用户对不同产品、话题和事件的看法和情感态度,为市场调研和推广活动提供有价值的信息。 本文旨在介绍情感分析的概念和定义,强调情感分析在自然语言处理领域的重要性和应用广泛性。同时,我们将探讨情感分析的方法和技术,分析其在不同领域的应用,并讨论情感分析面临的挑战和未来发展方向。
选自Facebook 作者:Alexandre Lebrun等 参与:李泽南、微胖 深度学习盛会 ICLR 2017 正在法国的土伦举行,Facebook 在大会前夕对人工智能实验室 FAIR 近期在
作者丨宋佳 最近,“谷歌研究院称AI已具备人格”登上热搜,谷歌程序员Blake Lemoine和他测试的对话AI系统LaMDA聊了很久,对其能力感到十分惊讶。在公开的聊天记录中,LaMDA竟然说出了“我希望每个人都明白,我是一个人”的言论,令人吃惊。于是,Blake Lemoine下了个结论:LaMDA 可能已经具备人格了。 谷歌、谷歌的批评者、AI业界对待这件事的看法形成了空前一致:这人是不是有病?谷歌公司和报道此事的《华盛顿邮报》,都委婉地表示Blake Lemoine的脑子可能真的有点乱。谷歌已经
原载:Paperweekly 作者:黄民烈,清华大学老师 关注自然语言处理、人机对话情感分析等方向 aihuang@tsinghua.edu.cn 当你悲伤的时候,机器人可以安慰你;当你高兴的时候,机器人为你高兴。悲你所悲,喜你所喜,真正的情感抚慰和陪伴,就需要这种情绪化的聊天技巧。 清华大学计算机系朱小燕、黄民烈老师团队研发的 ECM(Emotional Chatting Machine:情绪化聊天机器人)开始具备这样的能力。 近年来,随着深度学习的发展,应用于开放领域的对话系统正在受到越来越多的关注。与
领取专属 10元无门槛券
手把手带您无忧上云