这个问题可以转化为一个典型的树形结构问题。我们可以使用一个二叉树来表示中缀表达式,其中每个节点表示一个操作,其左子树表示操作数,右子树表示操作符。
在将中缀表达式转换为二叉树时,我们需要遵循以下步骤:
以下是一个示例代码,实现了将中缀表达式转换为二叉树的功能:
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
def inorder_to_postorder(inorder):
if not inorder:
return None
root = TreeNode(inorder[0])
i = 1
while i < len(inorder) and inorder[i] == inorder[0]:
i += 1
root.left = inorder_to_postorder(inorder[1:i])
root.right = inorder_to_postorder(inorder[i:])
return root
def inorder_to_preorder(inorder):
if not inorder:
return None
root = TreeNode(inorder[0])
i = 1
while i < len(inorder) and inorder[i] == inorder[0]:
i += 1
root.left = inorder_to_preorder(inorder[1:i])
root.right = inorder_to_preorder(inorder[i:])
return root
def inorder_to_prefix_tree(inorder):
if not inorder:
return None
root = TreeNode(inorder[0])
i = 1
while i < len(inorder) and inorder[i] == inorder[0]:
i += 1
root.left = inorder_to_prefix_tree(inorder[1:i])
root.right = inorder_to_prefix_tree(inorder[i:])
return root
def prefix_to_inorder(prefix, inorder):
if not prefix or not inorder:
return None
i = len(inorder)
while i >= 0 and inorder[i] != prefix[0]:
i -= 1
if i < 0:
return None
root = TreeNode(prefix[0])
root.left = prefix_to_inorder(prefix[1:i+1], inorder[i+1:])
root.right = prefix_to_inorder(prefix[i+1:], inorder[i+1:])
return root
def build_prefix_tree(inorder, postorder):
if not inorder or not postorder:
return None
root = TreeNode(postorder[-1])
i = len(inorder)
root.left = build_prefix_tree(inorder[:i], postorder[:i])
root.right = build_prefix_tree(inorder[i+1:], postorder[i:-1])
return root
def build_tree_from_inorder(inorder):
if not inorder:
return None
root = TreeNode(inorder[0])
i = 1
while i < len(inorder) and inorder[i] == inorder[0]:
i += 1
root.left = build_tree_from_inorder(inorder[1:i])
root.right = build_tree_from_inorder(inorder[i:])
return root
def inorder_to_tree(inorder):
if not inorder:
return None
root = TreeNode(inorder[0])
i = 1
while i < len(inorder) and inorder[i] == inorder[0]:
i += 1
root.left = inorder_to_tree(inorder[1:i])
root.right = inorder_to_tree(inorder[i:])
return root
def inorder_to_tree_and_postorder(inorder
没有搜到相关的沙龙
领取专属 10元无门槛券
手把手带您无忧上云