岭回归与多项式回归的最大区别就是损失函数上的区别。岭回归的代价函数如下: ? 为了方便计算导数,通常也会写成以下形式: ?...岭回归的代价函数仍然是凸函数,因此可以利用梯度等于0的方式求得全局最优解: ?...上述方程与一般线性回归方程相比多了一项λI,其中I表示单位矩阵,加入XTX是一个奇异矩阵(不满秩),添加这一项之后可以保证该项可逆,由于单位矩阵上的对角元素均为1,其余元素都为0,看起来像是一条山岭,因此而得名...weights X = np.insert(X, 0, 1, axis=1) y_pred = X.dot(self.w) return y_pred 岭回归的核心就是...return self.alpha * 0.5 * w.T.dot(w) def grad(self, w): return self.alpha * w 然后是岭回归的核心代码
+kI)XTY为B的岭回归估计,其中K为岭参数,I为单位矩阵,KI为扰动。...用R语言进行岭回归: lm.ridge(y~....擅长处理具有多重共线性的数据,与岭回归一样是有偏估计。...把p个预测变量投影到m维空间(m 3、岭回归、lasso回归和elastic net三种正则化方法[] (1)岭回归[] 最小二乘估计是最小化残差平方和(RSS): 岭回归在最小化RSS的计算里加入了一个收缩惩罚项...岭回归优于最小二乘回归的原因在于方差-偏倚选择。随着lambda的增大,模型方差减小而偏倚(轻微的)增加。
一、标准线性回归 在线性回归中我们要求的参数为: ?...详细的推导可以参见:http://blog.csdn.net/weiyongle1996/article/details/73727505 所以代码实现主要就是实现上式,python代码如下: import...更改k的值会获得不同的曲线,k越小,对真实数据拟合的越好(但可能过拟合),k越大,越趋向于标准的线性回归。 三、岭回归 岭回归就是在矩阵xTx上增加一项使得矩阵非奇异,从而能够对其求逆。...从上面两端代码我们可以看到,在之前对xTx求逆时都需要先判断xTx是否可以求逆,而岭回归就是解决这个问题的。岭回归的回归系数计算公式为: ?...以上代码python环境均为python3.6 代码参考: 《机器学习实战》 数据取自《机器学习实战》附带数据
岭回归算法简介 回归算法的本质上就是为了解决一个线性方程: Ax = b 标准估计方法是普通的最小二法的线性回归,然而如果x是一个病态的矩阵,在这种情况下使用普通最小二法估计会导致过拟合或者欠拟合的情况...此外,岭回归还可以处理矩阵阵列的多重共线性问题。...通常最小二乘法寻求的是最小花平方残差的综合,公式: 在岭回归中,在这种最小化中加入正则化项: 其中Г是Tikhonov matrix矩阵,在许多情况下,这个矩阵被选为单位矩阵的倍数,...Г=αI(注意:此处考虑的是具有较小范数的解决方案,不是较小系数,这里的系数指的是“回归系数”) 岭回归性质 1)岭回归与OLS的关系: 由于岭回归与OLS相差无几,这里就不在详细赘述了,直接上代码...#实现岭回归的函数 def ridge_regression(array_x,array_y,lambda_1): #创建设计矩阵 X = np.column_stack((np.ones(array_x
本文记录岭回归角度进行线性回归的方法。...y}=f({\bf{x}}) 其中y是模型的输出值,是标量,\bf{x}为d维实数空间的向量 线性模型可以表示为: f(\bf{x})=\bf{w} ^Tx,w\in \mathbb{R} 线性回归的任务是利用...} \cdots \quad y _ { n } ] ^ { T } \quad y \in \mathbb{R} 来预测线性模型中的参数 \bf{\omega},使得模型尽可能准确输出预测值 线性回归.../ 岭回归 岭回归就是带有L_2正则的线性回归> 之前最小二乘法的损失函数: L(w)= w^{T} X{T{\prime}} X w-2 w^{T} X^{T} Y+Y^{T} Y 岭回归的代价函数
回归分析中最常用的最小二乘法是一种无偏估计, 回归系数矩阵为 ? 当X不是列满秩矩阵时,即特征数n比样本数m还多,则X.T*X的行列式为0,逆不存在。...为了解决这个问题,统计学家引入岭回归的概念。简单来说,岭回归就是在矩阵X.T*X上加上一个λI从而使矩阵非奇异,进而能对 X.T*X + λI 求逆。...其中,λ是一个用户给定的参数,I是一个nxn的单位矩阵(像是在0构成的平面上有条1组成的“岭”)。 在这种情况下,回归系数的计算公式为: ?...对于本数据集,回归系数矩阵中各项回归系数随λ的变化规律如下: ?...ridgeWeights[:,i], label = "W(%s)"%i) plt.legend(loc="upper right") #$\lambda\ $ 注意这里的空格符 plt.title(r"岭回归
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
目录结构 ---- 线性回归的一般形式 线性回归中可能遇到的问题 过拟合问题及其解决方法 线性回归代码实现 岭回归与Lasso回归 岭回归以及Lasso回归代码实现 线性回归的一般形式 ---- 线性回归中可能遇到的问题...,岭回归以及Lasso回归就是这么做的。...岭回归与Lasso回归最大的区别在于岭回归引入的是L2范数惩罚项,Lasso回归引入的是L1范数惩罚项,Lasso回归能够使得损失函数中的许多θ均变成0,这点要优于岭回归,因为岭回归是要所有的θ均存在的...,这样计算量Lasso回归将远远小于岭回归。...岭回归以及Lasso回归代码实现 ---- 岭回归代码示例 import matplotlib.pyplot as plt import numpy as np from sklearn import
在某些场景下,线性回归无法给出一个效果好的预测模型,那么就需要使用线性回归的升级版,去面对更复杂的应用场景,本文所记录的岭回归便是线性回归的一个升级版。...在python中对上述数据进行线性回归的模型拟合import numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport sklearn.linear_model...就需要使用岭回归。...岭回归的实现岭回归同样可以用python的sklearn库,下面展示相关的API调用。...result=model.predict(array)岭回归代码实例以上面提到的薪资预测的例子来进行岭回归的一个示例,首先看一下如果正则项设为0,这其实就是普通的线性回归模型了# 训练一个岭回归模型model
回归分析属于有监督学习问题,本博客将重点回顾标准线性回归知识点,并就线性回归中可能出现的问题进行简单探讨,引出线性回归的两个变种岭回归以及Lasso回归,最后通过sklearn库模拟整个回归过程。...,岭回归以及Lasso回归就是这么做的。...岭回归与Lasso回归最大的区别在于岭回归引入的是L2范数惩罚项,Lasso回归引入的是L1范数惩罚项,Lasso回归能够使得损失函数中的许多θ均变成0,这点要优于岭回归,因为岭回归是要所有的θ均存在的...,这样计算量Lasso回归将远远小于岭回归。...0x06 岭回归以及Lasso回归代码实现 6.1 岭回归代码示例 import matplotlib.pyplot as plt import numpy as np from sklearn import
回归(Regression) 概述 我们前边提到的分类的目标变量是标称型数据,而回归则是对连续型的数据做出处理,回归的目的是预测数值型数据的目标值。 回归 场景 回归的目的是预测数值型的目标值。...我们这里所说的,回归系数是一个向量,输入也是向量,这些运算也就是求出二者的内积。 说到回归,一般都是指 线性回归(linear regression)。...回归 原理 1、线性回归 我们应该怎样从一大堆数据里求出回归方程呢? 假定输入数据存放在矩阵 x 中,而回归系数存放在向量 w 中。...4.1.1、岭回归 原始代码 完整代码地址: https://github.com/apachecn/AiLearning/blob/master/src/py2.x/ml/8.Regression/regression.py...4.4、小结 当应用缩减方法(如逐步线性回归或岭回归)时,模型也就增加了偏差(bias),与此同时却减小了模型的方差。 5、权衡偏差和方差 任何时候,一旦发现模型和测量值之间存在差异,就说出现了误差。
,分别对应岭回归和Lasso回归,最后考虑到线性回归的局限性,介绍了一种局部加权线性回归,增加其非线性表示能力 线性回归 A、线性回归 假设有数据有: ?...岭回归和Lasso回归 岭回归的目标函数在一般的线性回归的基础上加入了正则项,在保证最佳拟合误差的同时,使得参数尽可能的“简单”,使得模型的泛化能力强(即不过分相信从训练数据中学到的知识)。...Lasso回归采用一范数来约束,使参数非零个数最少。而Lasso和岭回归的区别很好理解,在优化过程中,最优解为函数等值线与约束空间的交集,正则项可以看作是约束空间。...考虑到过拟合和欠拟合问题,有岭回归和lasso回归来防止过拟合,局部加权线性回归通过加权实现非线性表示。...Lasso回归 /** 下面的岭回归函数只是在一般的线性回归函数的基础上在对角线上引入了岭的概念,不仅有解决矩阵不可逆的线性,同样也有正则项的目的, 采用常用的二范数就得到了直接引入lam的形式。
之前我们讨论了许多关于优化的算法,随着模型的优化算法在不断的改进使得模型的学习能力越来越强,那么如果模型的学习能力过强,就会导致模型的过拟合问题,因此今天我们来介绍一下机器学习中防止模型过拟合的方法—岭回归...那么岭回归是如何解决过拟合的问题呢? 答:岭回归用于控制模型系数的大小来防止过度拟合。岭回归通过在成本函数中加入模型参数的正则项以平衡数据的拟合和系数的大小。...即岭回归成本= RSS(W)+λ* || W ||²=(Y - WH)*(Y - WH)+ WW,在矩阵表示法中写为:岭回归成本=(Y - HW)ᵗ(Y - HW)+WᵗW。...在求解岭回归的成本函数时,通常使用梯度下降的思想,将上式方程求微分得: Δ[RSS(W) + λ||W||]² = Δ{(Y - HW)ᵗ(Y - HW)} + λ Δ{WᵗW} = -2Hᵗ(Y -...下面提供一个使用梯度下降进行岭回归求解的例子。例子来源文末博客。
在线性回归中如果参数 ? 过大、特征过多就会很容易造成过拟合,如下如所示: ? 正则化 岭回归与Lasso回归的出现是为了解决线性回归出现的过拟合以及在通过正规方程方法求解 ? 的过程中出现的 ?...上图中左边为Lasso回归,右边为岭回归。...以两个变量为例,解释岭回归的几何意义: 1、没有约束项时。模型参数 ? , ? 已经经过标准化。残差平方和RSS可以表示为 ? , ? 的一个二次函数,数学上可以用一个抛物面表示。 ? 2、岭回归时。...可见岭回归解与原先的最小二乘解是有一定距离的。...使用Scikit-Learn进行岭回归、Lasso回归和ElasticNet回归 岭回归 岭(Ridge)回归再普通最小二乘法的损失函数中增加了额外的缩减惩罚项,以限制L2范数的平方项。 ?
.所有系数的平方和,即L2范数,对应的回归方法叫做Ridge回归,岭回归 岭回归对应的代价函数如下 ?...对于岭回归而言,可以直接对损失函数进行求导,在导数为0处即为最小值,直接利用矩阵运算就可以求解回归系数 ? 对于套索回归而言,损失函数在w=0出不可导,所以没法直接求解,只能采用近似法求解。...在scikit-learn中,有对应的API可以执行岭回归和套索回归 1....岭回归 >>> data = np.array([[0, 0], [0, 0], [1, 1]]) >>> data array([[0, 0], [0, 0], [1, 1...(-1,1) >>> target array([[0. ], [0.1], [1. ]]) >>> from sklearn import linear_model # 岭回归
过拟合、欠拟合如何解决 5.1 什么是L2正则化(岭回归) 5.2 什么场景下用L2正则化 5.3 什么是L1正则化(Lasso回归) 5.4 什么场景下使用L1正则化 5.5 什么是ElasticNet...回归 5.6 ElasticNet回归的使用场景 6....5.1 什么是L2正则化(岭回归) ? L表示为图中的黑色圆形,随着梯度下降法的不断逼近,与圆第一次产生交点,而这个交点很难出现在坐标轴上。...5.2 什么场景下用L2正则化 只要数据线性相关,用LinearRegression拟合的不是很好,需要正则化,可以考虑使用岭回归(L2), 如何输入特征的维度很高,而且是稀疏线性关系的话, 岭回归就不太合适...5.6 ElasticNet回归的使用场景 ElasticNet在我们发现用Lasso回归太过(太多特征被稀疏为0),而岭回归也正则化的不够(回归系数衰减太慢)的时候,可以考虑使用ElasticNet回归来综合
Lasso回归与ridge回归有很多相似之处,但是二者之间有一些显著的区别。如果你不太清楚岭回归,请参考前一章节推文:通俗易懂的岭回归。...1 lasso回归 与 ridge 回归的相同点 1.1 lasso回归 与 ridge 回归主要思想相同 在岭回归中,我们通过残差平方和与惩罚项总和最小,以确定岭回归模型。...1.2 lasso回归与岭回归的运用场景一致 Lasso回归与岭回归的使用场景一致,如在连续变量的线性模型、分类变量的线性模型、logistic回归,以及复杂的模型,详见岭回归。...在岭回归中,随着λ逐渐增大,岭回归中的直线斜率逐渐趋近于0,但是不等于0。岭回归不能减少模型中的参数,只能缩小模型中某些参数的数值(如降低无关变量参数的系数值)。 ?...这是两种正则化回归最主要的区别。 2.1 lasso回归与岭回归的比较 分别将lasso回归和岭回归运用于复杂的线性模型中,如下所示。 ? 岭回归中的惩罚项如下: ?
本文介绍线性回归模型,从梯度下降和最小二乘的角度来求解线性回归问题,以概率的方式解释了线性回归为什么采用平方损失,然后介绍了线性回归中常用的两种范数来解决过拟合和矩阵不可逆的情况,分别对应岭回归和Lasso...岭回归和Lasso回归 岭回归的目标函数在一般的线性回归的基础上加入了正则项,在保证最佳拟合误差的同时,使得参数尽可能的“简单”,使得模型的泛化能力强(即不过分相信从训练数据中学到的知识)。...Lasso回归采用一范数来约束,使参数非零个数最少。而Lasso和岭回归的区别很好理解,在优化过程中,最优解为函数等值线与约束空间的交集,正则项可以看作是约束空间。...考虑到过拟合和欠拟合问题,有岭回归和lasso回归来防止过拟合,局部加权线性回归通过加权实现非线性表示。...Lasso回归 /** 下面的岭回归函数只是在一般的线性回归函数的基础上在对角线上引入了岭的概念,不仅有解决矩阵不可逆的线性,同样也有正则项的目的, 采用常用的二范数就得到了直接引入lam的形式。
L1正则化项的回归模型叫做LASSO回归,而把带有L2正则化项的回归叫做岭回归。...▍L2正则化:岭回归 岭回归的提出 我们在之前通过最小二乘法推导出多元线性回归的求解公式: ? 这个公式有一个问题:X不能为奇异矩阵,否则无法求解矩阵的逆。...▍L1正则化:LASSO回归 LASSO回归形式上与岭回归非常相似,只是将平方换成了绝对值。 ?...可以发现:最开始的时候岭回归下降的非常快,但是随着值越来越小,岭回归下降速度也越来越慢,当快接近0的时候,速度会非常慢,即很难减小到0。...相反,LASSO回归是以恒定的速度下降的,相比于岭回归更稳定,下降值越接近近0时,下降速度越快,最后可以减小到0。 下面是一组岭回归和LASSO回归的特征系数随着模型不断迭代而变化的动态展示。 ?
领取专属 10元无门槛券
手把手带您无忧上云