在担任 Uber CTO 的七年间,他带领这家国际共享出行巨头在广阔的运输网络背景下,开发了革命性技术。在 Uber,他的领导力和远见卓识极大促进了 Uber 技术基础的建设,使其共享乘车次数从每年的 1000 万余次增长到每年近 70 亿次,并辐射达 800 个城市。
一年一度的双十一又双叒叕来了,给技术人最好的礼物就是大促技术指南!而经过这些年的发展,大促早已不仅仅局限于电商行业,现在各行各业其实都会采用类似方式做运营活动,汽车界有 818,电商有 618 、11.11 等等,各种各样的大促场景,对包括数据库在内的基础软件提出了很多新挑战,同时也积累了诸多最佳实践。
『目的』满足贯穿从商品展示、搜索、购买、支付等整个流程,电商对于精细化、精准化促销运营的需求,使多渠道(终端)、多区域化营销成为简单易行的配置操作,提升运营能力。
关于数据仓库的概念、原理、建设方法论,网上已经有很多内容了,也有很多的经典书籍,本文更想聊聊企业数据仓库项目上的架构和组件工具问题。
微服务架构下,很适合用 DDD(Domain-Drive Design)思维来设计各个微服务,使用领域驱动设计的理念,工程师们的关注点需要从 CRUD 思维中跳出来,更多关注通用语言的设计、实体以及值对象的设计。至于数据仓库,会有更多样化的选择。分布式系统中数据存储服务是基础,微服务的领域拆分、领域建模可以让数据存储方案的选择更具灵活性。
创建一个真实高质量的低代码商业项目需要考虑多个方面,包括项目的目标、技术选择、团队组建等。以下是一个简要的示例项目:
智慧生活商城系统旨在提供一个便捷的电子商务平台,让用户可以方便地浏览、购买商品,同时为管理员提供管理商城和用户的功能。系统需求包括前台展示和后台管理两大模块,涵盖了用户和管理员两种角色的功能需求。
目前,各行业的数智化进程如火如荼,企业对数智化用户运营的需求日益旺盛;同时,在万物互联的5G时代,用户触达的渠道也变得更加丰富。企业需要更高效、智能的方式进行用户触达管理。基于此,个推将多年来积累的数字化运营经验和用户触达能力相结合,打造了“消息中心”系统产品,能够帮助企业客户将APP通知栏消息、短信、微信、钉钉的系统消息、智能人工外呼、5G消息等行业八大主流用户触达渠道进行有效整合和管理。
“双11”带来的购物狂潮余温尚存,“双12”又火热来袭,而面对愈演愈烈的促销大战,云市场显然已按耐不住云服务商的热情,各家动作频频,其中以阿里云、天翼云、腾讯云为主要代表,借助岁末年关纷纷推出大幅度优惠促销活动。业内专家认为,作为如今最火爆的新兴市场,越来越多的 “云”企业短兵相接、各展所长,预计1-3年内中国必有几个非常大的云服务商强势崛起。 云市场短兵相接,促销活动夺眼球 记者了解到,12月18日前后,云服务商活动相对集中,中国电信、阿里、腾讯等大品牌均在此前后开展活动,其中,主要三家云
随着电子商务的快速发展,电商平台之间的竞争日益激烈。对于电商企业来说,快速、准确地获取商品信息变得至关重要。万邦获得1688商品详情接口作为中国最大的B2B电商平台之一,提供了丰富的商品信息和实时数据。通过该接口,电商企业可以快速获取商品详情信息,提高销售效率和客户满意度。本文将深入探讨万邦获得1688商品详情接口在电商行业中的重要性,并通过实例代码介绍如何实现实时数据获取。
在当今数字化时代,电商业务正蓬勃发展。为了满足不断增长的电商市场需求,构建高效、可扩展的电商系统至关重要。Mall 项目是一套出色的电商系统,包括前台商城系统和后台管理系统,采用了现代化的技术栈,为您提供了构建电商平台的最佳实践。
在中国数字化变革和数字经济发展大背景的推动下,作为基础软件,数据库日益成为中国数字经济发展背后最重要的基础设施之一。在形势日益复杂的国际环境下,自主可控的行业共识也日益被中国技术界所认可。一直以来,国家持续出台关于数据库的利好政策: 国家 863 计划设立了“数据库重大专项”等注重研究国产数据库的计划。 “十一五”宣布要以信息化带动工业化,同时数据库进入“核高基”重大科研专项,以数据库作为主营业务的初创公司大量出现,云计算厂商也开始布局云数据库,国产数据库进入再一次的高发展期。 经 InfoQ 研究中心统计
1961年通用电气公司的Charles Bachman 成功地开发出世界上第一个网状DBMS也是第一个数据库管理系统——集成数据存储(Integrated Data Store,IDS) 层次型DBMS是紧随网状型数据库而出现的。最著名最典型的层次数据库系统是IBM 公司在1968 年开发的IMS (Information Management System)网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。
先说一下我的个人情况,18届应届毕业生,去年9月份开始在上海一家软件公司实习,直到今年的4月底离开公司,6月中旬开始找工作,现已经拿到较为满意的offer(坐标上海)。
追求可以在水平方向上无限扩展的大规模分布式数据库,已经导致了专业数据库的爆炸式增长,实际上发布了数十种不同的数据模型和针对超特定用例的整个产品。
关系型数据库是指采用了关系模型来组织数据的数据库,而关系模型是由二维表及其联系组成的数据组织。
现在有了 ElasticSearch,就可以直接使用基于 Lucene 的各种检索功能,ElasticSearch 是一个基于 Lucene 的分布式全文检索框架,在 Lucene 类库的基础上实现,可以避免直接基于 Lucene 开发,这一点和 Java 中 Netty 对 IO/NIO 的封装有些类似。
在不那么遥远的旧 IT 时代,有这样一个段子——假如把数据库们”聚在一起“开会”。 Oracle: 我们需要企业级数据库。 MySQL: Oracle 不开源。 PostgreSQL: MySQL 的
携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第24天,点击查看活动详情
开源软件供应链点亮计划 - 暑期 2021(下简称:开源之夏)是由中国科学院软件研究所与 openEuler 社区共同举办的一项面向高校学生的暑期活动,旨在鼓励在校学生积极参与开源软件的开发维护,促进优秀开源软件社区的蓬勃发展。中科院联合包括 Nebula Graph 在内的国内各大开源社区,针对重要开源软件的开发与维护提供项目,并向全球高校学生开放报名。学生在自由选择项目后,与社区导师沟通实现方案并撰写项目计划书。被选中的学生将在社区导师指导下,按计划完成开发工作,并将成果贡献给社区。根据项目的难易程度和完成情况,参与者将获得由主办方发放的 6,000 - 12,000 不等的项目奖金。
大数据文摘作品,欢迎个人转发朋友圈;其他机构、自媒体转载,务必后台留言,申请授权。 作者| Shuvayan Das 翻译| 张龙吟,卞铮 校对| 康欣,土家 编辑| Ivy 小编注:在Mongo
数据库要将数据进行管理的前提就是将数据进行存储。但是存储数据使用文件就可以了,为什么还要弄个数据库呢?
相信大家对传统关系型数据库都不陌生,我们常常使用的关系型数据库有 MySQL、Oracle、SQL Server、SQLite、DB2、Teradata、Infomix、Sybase、PostgreSQL、Access、FoxPro 等;相对应的,常见的 NoSQL 数据库有 MongoDB、Memcached、Redis、HBase、CouchDB、Neo4j、Cassandra、Riak 等。
墨墨导读:事实上,关系型数据库今天已经形成了『两商用加两开源,并驾齐驱四天王』的整体格局。
而不论我们使用的是上面的哪一个关系型数据库,最终在操作时,都是使用SQL语言来进行统一操作,因为我们前面讲到SQL语言,是操作关系型数据库的 统一标准 。所以即使我们现在学习的是MySQL,假如我们以后到了公司,使用的是别的关系型数据库,如:Oracle、DB2、SQLServer,也完全不用担心,因为操作的方式都是一致的。
👆点击“博文视点Broadview”,获取更多书讯 项目早期无论是从成本考虑,或者是业务模型考虑,往往难以估量长期的业务变化发展,尤其是数据库的扩容,项目的设计成员往往会单纯得以为,等到数据量膨胀以后,直接扩容数据库的规格,通过堆硬件的方式来解决数据库负载的问题。 在笔者的从业经验来看,这样的思想几乎是行业的“主流思想”,这也无可厚非,从业务角度,底层做得越透明,往往是越成功的。但从数据库的角度来看,单纯的堆硬件扩容依然存在非常大的性能隐患。 如果早期的时候,使用了8C 16G的RDS规格,以支撑1w Q
在学习redis之前我们先来学习两个概念,即什么是关系型数据库什么是非关系型数据库,二者的区别是什么,二者的关系又是什么?
随着大数据时代的到来,在企业的日常经营活动当中会产生各种各样的数据,对于数据的汇总整理分析也是非常重要的,能够为企业的经营者提供正确的决策和判断依据,所以数据可视化分析工具的重要性不言而喻了。
尽管NoSQL数据库继续蓬勃发展,但关系型数据库仍然远未结束。但在关系型数据库中,有一个数据库在不断增长的同时,其他更成熟的数据库却付出了代价。是的,我说的是PostgreSQL。真正的问题不是为什么开发人员喜欢PostgreSQL,有很多原因可以解释。而是为什么开发人员现在如此喜欢它。
详见: https://www.cnblogs.com/NorthPoet/p/16901095.html
最近小伙伴在讨论单体到微服务架构中数据这块如何演进,相信这篇能给大家带来启发。 ---- 来源:SphereEx 链接:https://segmentfault.com/a/1190000041107436 排版:悟空哥 京东白条的快速发展满足了当前人们日益增长的消费需求。在京东商城上用京东白条来支付,已经成为一大批用户的消费习惯,更是在某种意义上成为了京东对外的『标签』。而作为一家互联网金融消费平台,京东白条的后台技术团队更是不容忽视的存在。而其也正是支撑京东白条自 2014 年初上线伊始,至今服务数亿用
与传统数据的记录不同,数据库是数据记录的载体发生了改变,将数据记录的载体变为磁盘。2017年互联网1天的交易数据1.82ZB(人类从文字记载开始,所有的文字记载,转为电子格式)
1. 关系型数据库 关系型数据库,是指采用了关系模型来组织数据的数据库。 关系模型是在1970年由IBM的研究员E.F.Codd博士首先提出的,在之后的几十年中,关系模型的概念得到了充分的发展并逐渐成为主流数据库结构的主流模型。 简单来说,关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。 关系模型中常用的概念: 关系:可以理解为一张二维表,每个关系都具有一个关系名,就是通常说的表名 元组:可以理解为二维表中的一行,在数据库中经常被称为记录 属性:可以理解为二维
当前的大环境和技术氛围,提供给国产化技术厂商一个千载难逢的推广机会,操作系统、数据库、中间件、办公终端各领域,无论是供应商,还是使用者,比以往任何时候都更积极和主动,并且更具成效。
这只是市场上主流数据库的一小部分,实际上还有很多其他数据库类型和实现。选择适合项目需求的数据库类型通常取决于数据模型、性能需求、可扩展性等因素。
看上去关系型数据库很多,繁杂,但其实我们都是用关系型数据库SQL语言来对这些数据库进行操作的。而 SQL编程语言是统一标准,所以即便只掌握了MySQL数据库,在上手Oracle等数据库操作方式也是一致的
1.面向操作的关系型数据库 典型性应用领域:ERP,CRM,信用卡交易,中小型电商 数据储存方法:表格 流行厂商:Oracle Database,Microsoft SQLServer,IBM DB2,EnterpriseDB(PostgreSQL),MySQL 优点:完善的生态环境保护,事务保证/数据一致性 缺点:严苛的数据模型界定,数据库拓展限制,和非结构型的结合应用较难。
2016年初,京东在印尼正式落地了第一个海外本土站点;今年11.11,京东印尼站当天单量同比增长845%,连续三年保持超高速增长。
DB-Engines 12 月份数据库流行度排行榜已发布更新,下面让我们一起来看看这份榜单,了解数据库技术的发展趋势。
在当今的数字革命浪潮中,大数据成为公司企业分析客户行为和提供个性化定制服务的有力工具,大数据切切实实地帮助这些公司进行交叉销售,提高客户体验,并带来更多的利润。 随着大数据市场的稳步发展,越来越多的公司开始部署大数据驱动战略。 Apache Hadoop是目前最成熟的大数据分析工具,但是市场上也不乏其他优秀的大数据工具。目前市场上有数千种工具能够帮你节约时间和成本,带你从全新的角度洞察你所在的行业。 以下介绍18种功能实用的大数据工具: Avro:由Doug Cutting公司研发,可用于编码Hadoop文
随着产品复杂度的提升和微服务架构的流行,一个业务系统背后的数据存储系统也越来越复杂。
数据库就是存储数据的仓库,其本质是一个文件系统,按照特定的格式将数据存储起来,用户可以对数据库中的数据进行增加,修改,删除及查询操作。
自1970年埃德加·科德提出关系模型之后,关系型数据库便开始出现,经过了40多年的演化,如今的关系型数据库种类繁多,功能强大,使用广泛。面对如此之多的关系型数据库,我们应该如何权衡找出适合自己应用场景的数据库系统呢?O.S. Tezer最近在DigitalOcean上发表了一篇博文,对比了SQLite、MySQL和PostgreSQL这三个常用的、流行的关系型数据库管理系统(RDBMS),希望能对你有所帮助。 O.S. Tezer分别从数据库支持的数据类型、优势、劣势、何时应该使用以及何时不应该使用该数据库
数据库是信息科技领域中不可或缺的一部分,它们在我们日常生活中扮演着重要的角色,从手机应用到云计算,无处不在。在本篇博客中,我们将深入探讨数据库的基本概念以及MySQL这一流行的开源关系型数据库的详细信息。不需要数据库专业知识,我们将从头开始,向您解释这些复杂的概念。
上一节我们认识了数据库,了解了数据库事务是什么,索引是如何提升数据库性能的,现在我们来学习下大家常说的一些数据库,MySQL、mongoDB、kv等等这些又有什么区别。本文中,SQL 与 NoSQL 代表关系型数据库与非关系型数据库,当然,SQL ≠ 关系型数据库,这里用作简写。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
产品经理要不要懂技术的问题一直有很多的观点和讨论,一般来讲产品懂技术是有一定的优势,但不是充分必要条件。而数据产品是B端更偏底层的工种,有一定技术基础后,开展工作更顺利。找工作的经历里面,有被问到过你
简单的说,数据库(因为Database)就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织、存储的,我们可以通过数据库提供的多种方式来管理数据库里的数据。
领取专属 10元无门槛券
手把手带您无忧上云